Convenient Synthesis of Alcohol O-Hemiesters using Isopropenyl Esters as Acylating Reagents: Synthesis of Hydrophilic Oxaunomycin 10-O-Hemiester Derivatives

Yasuyuki Kita,* Hiroshi Maeda, Fumie Takahashi and Seiji Fukui
Faculty of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka 565, Japan

Abstract

Various types of alcohol O-hemiesters $7 a-m$ were synthesized conveniently in good yield by reaction with isopropenyl esters 4a-f in the presence of a catalytic amount of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ or toluene-p-sulfonic acid followed by selective deprotection of the terminal esters. This method was applied to a preparation of hydrophilic oxaunomycin 10-O-hemiester derivatives $14 \mathrm{a}, \mathrm{b}$ and $19 \mathrm{a}-\mathbf{c}$.

Considerable efforts have been devoted to the synthesis of hydrophilic O-hemiester derivatives of various clinically efficacious drugs, notably in the fields of steroids, ${ }^{1}$ tocopherols, ${ }^{2}$ anthracycline antibiotics ${ }^{3}$ and taxol. ${ }^{4}$ Currently, they are prepared by (i) treatment of alcohols with cyclic acid anhydrides, (ii) treatment of alcohols with acid chlorides in the presence of a base, followed by deprotection of the terminal esters which are prepared by method (i) or from only simple alcohols and dicarboxylic acids, or (iii) conversion of alcohols into halogeno compounds followed by nucleophilic substitution with dicarboxylic monoanions, and are used to create less toxic drugs. These methods, however, have several restrictions: (i) medium to large unstable anhydrides ${ }^{5}$ cannot be employed in the direct acylation of alcohols, (ii) bulky secondary or tertiary alcohols do not react easily with acid anhydrides or acid chlorides, (iii) alcohols bearing some base-sensitive functional groups cannot be allowed to react with acid anhydrides or acid halides in the presence of the base and (iv) bulky alcohols may be troublesome to transform into the halogeno compounds. In a previous communication, we reported a novel and convenient method for the acylation of bulky alcohols using isopropenyl esters and selective deprotection of the terminal ester leading to the monoesters. ${ }^{6}$ We now report a full account of these studies and their applications to hydrophilic oxaunomycin $10-O$-hemiesters and related derivatives.

Results and Discussion

The isopropenyl esters $\mathbf{4 a - f}{ }^{7}$ were prepared from the half-esters 1a-f bearing terminal esters as the protecting groups (Scheme 1). The known half-esters $1 \mathrm{a},{ }^{8} \mathbf{1 c},{ }^{9} \mathbf{1 d}^{10}$ and $1 \mathbf{f}^{11}$ were prepared by standard methods. The unknown half-esters $\mathbf{1 b}, \mathbf{e}$ bearing 2(trimethylsilyl)ethyl (TMSE) ester groupings were synthesized from the benzyl esters 1a, d or from succinic anhydride 3. Thus, the half-esters $1 \mathbf{a}, \mathbf{d}$ were converted into the diesters $2 \mathrm{a}, \mathrm{d}$ by chlorination with oxalyl dichloride at below room temperature \dagger followed by alcoholysis with 2-(trimethylsily)ethanol in the presence of pyridine. Catalytic hydrogenation of diesters 2a, d afforded compounds 1b, \mathbf{e} in good yield. Alternatively, hemiester $\mathbf{1 b}$ was obtained conveniently from succinic anhydride 3 by treatment with 2-(trimethylsilyl)ethanol in the presence of pyridine.
The desired isopropenyl esters $\mathbf{4} \mathbf{a}-\mathbf{f}$ were prepared by two different methods. Similarly to the reported methods, ${ }^{12}$ halfesters 1a-f reacted with isopropenyl acetate in the presence of a

[^0]

Scheme 1 Reagents: i, (COCl$)_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii, 2-(trimethylsilyl)ethanol, pyridine; iii, $\mathrm{H}_{2} / \mathrm{Pd}, 1,4$-dioxane; iv, isopropenyl acetate, cat. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, cat. $\mathrm{Hg}(\mathrm{OAc})_{2} ;$ v, acetone, $\mathrm{KH}, \mathrm{DME}$
catalytic amount of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ and mercury(II) acetate to give diesters 4a-f in moderate yield (route \mathbf{A}). The esters $4 \mathbf{a}$ and $\mathbf{4 c}$ f were also prepared by direct acylation of the potassium enolate generated from acetone and potassium hydride in 1,2-dimethoxyethane (DME) with the corresponding acid chloride \ddagger at $0^{\circ} \mathrm{C}$ (route B). Physical data of these isopropenyl esters are summarized in Table 1.

All acylations were performed in the presence of a catalytic amount of acid to give a high yield of diesters $\mathbf{6 a - y}$. When conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ was used as catalyst, the acylation was over in a short time through the use of a slight excess of the reagent (Table 2, runs $1,5,7,9$ and 11). Use of $p-\mathrm{TsOH}$ (PTSA) as catalyst required two mole equivalents of the reagents to consume the alcohol completely (runs $2,4,6,8,10$ and 12). This acylation method is quite useful not only for the bulky alcohols such as tertiary alcohols 5e, f (runs 22-27), endo-trinorborneol 5d (run 21) and pantolactone 5i (runs 31-33), but also for phenol 5j (runs 34-36). Furthermore, olefin and nitrile groups were not affected under these reaction conditions (runs 28-30). In the

[^1] and we were unable to isolate it.

Table 1 Physical data of isopropenyl esters 4

Compound	$\begin{aligned} & \text { B.p. } /{ }^{\circ} \mathrm{C} \\ & (\mathrm{mmHg}) \end{aligned}$	$\begin{aligned} & v_{\max ^{-1}}\left(\mathrm{CHCl}_{3}\right) / \end{aligned}$		$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$	Formula	Found (\%) (Required)	
		$\mathrm{C}=0$	$\mathrm{C}=\mathrm{C}$			C	H
4a	$\begin{aligned} & 165-168 \\ & (2.0) \end{aligned}$	1735	1670	$\begin{aligned} & 1.89(3 \mathrm{H}, \mathrm{~s}), 2.72(4 \mathrm{H}, \mathrm{~s}), 4.67 \text { and } 4.69(1 \mathrm{H} \text { each, } 2 \mathrm{~s}), 5.14 \\ & (2 \mathrm{H}, \mathrm{~s}), 7.35(5 \mathrm{H}, \mathrm{~s}) \end{aligned}$	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4}$	$\begin{aligned} & 67.4 \\ & (67.72) \end{aligned}$	$\begin{gathered} 6.45 \\ (6.50) \end{gathered}$
4b	$\begin{aligned} & 122-124 \\ & (0.60) \end{aligned}$	1725	1670	$\begin{aligned} & 0.04(9 \mathrm{H}, \mathrm{~s}), 0.9-1.1(2 \mathrm{H}, \mathrm{~m}), 1.93(3 \mathrm{H}, \mathrm{~s}), 2.5-2.8(4 \mathrm{H}, \mathrm{~m}) \text {, } \\ & 4.1-4.3(2 \mathrm{H}, \mathrm{~m}), 4.65-4.75(2 \mathrm{H}, \mathrm{~m}) \end{aligned}$	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Si}$	$\begin{gathered} 55.6 \\ (55.78) \end{gathered}$	$\begin{gathered} 8.55 \\ (8.58) \end{gathered}$
4c	$\begin{aligned} & 104-106 \\ & (14) \end{aligned}$	1735	1670	$1.92(3 \mathrm{H}, \mathrm{s}), 2.6-2.8(4 \mathrm{H}, \mathrm{m}), 3.71$ ($3 \mathrm{H}, \mathrm{s}$), 4.65-4.75 ($2 \mathrm{H}, \mathrm{m}$)	$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{4}$	$\begin{gathered} 55.45 \\ (55.80) \end{gathered}$	$\begin{array}{r} 7.15) \\ (7.03) \end{array}$
4d	$\begin{aligned} & 168-171 \\ & (0.30) \end{aligned}$	1735	1670	1.3-1.5 ($2 \mathrm{H}, \mathrm{m}$), 1.5-1.8 ($4 \mathrm{H}, \mathrm{m}$), 1.91 (3.H, s), $2.37(4 \mathrm{H}$, br t, J7.3), 4.66 and $4.69(1 \mathrm{H}$ each, 2 s$), 5.11(2 \mathrm{H}, \mathrm{s}), 7.3-7.5$ ($5 \mathrm{H}, \mathrm{m}$)	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4}$	$\begin{gathered} 70.25 \\ (70.32) \end{gathered}$	$\begin{gathered} 7.5 \\ (7.64) \end{gathered}$
4e	$\begin{aligned} & 128 \\ & (0.38) \end{aligned}$	1720	1670	$0.04(9 \mathrm{H}, \mathrm{s}), 0.9-1.1(2 \mathrm{H}, \mathrm{m}), 1.3-1.5(2 \mathrm{H}, \mathrm{m}), 1.5-1.8(4 \mathrm{H}$, m), $1.92(3 \mathrm{H}, \mathrm{s}), 2.29$ and 2.38 (2 H each, $2 \mathrm{t}, J 7.3$), 4.1-4.3 ($2 \mathrm{H}, \mathrm{m}$), 4.65-4.75 ($2 \mathrm{H}, \mathrm{m}$)	$\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si}$	$\begin{gathered} 60.05 \\ (59.96) \end{gathered}$	$\begin{gathered} 9.45 \\ (9.39) \end{gathered}$
4 f	$\begin{aligned} & 121-123 \\ & (2.5) \end{aligned}$	1730	1670	$1.3-1.5(2 \mathrm{H}, \mathrm{~m}), 1.6-1.8(4 \mathrm{H}, \mathrm{~m}), 1.92(3 \mathrm{H}, \mathrm{~s}), 2.25-2.45$ ($4 \mathrm{H}, \mathrm{m}$), $3.67(3 \mathrm{H}, \mathrm{s}), 4.67$ and 4.70 (1 H each, 2 s)	$\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{4}$	$\begin{aligned} & 61.5 \\ & (61.66) \end{aligned}$	$\begin{gathered} 8.3 \\ (8.47) \end{gathered}$

work-up of the reaction, an excess of acylating reagent was quenched by treatment with several drops of conc. hydrochloric acid under ice-cooling. All results of the acylation and the physical data of acylation products (diesters) are summarized in Tables 2 and 3, respectively.

For the purpose of obtaining alcohol O-hemiesters 7, a terminal ester of diester 6 must be removed selectively. Three types of deprotection methods were examined with substrates $6 \mathrm{~m}-\mathrm{o}$ as representative examples (Table 2): (i) catalytic hydrogenation of the benzyl ester $6 \mathrm{~m}(\operatorname{method} A)$, (ii) desilylative fragmentation of the 2-(trimethylsilyl)ethyl (TMSE) ester $6 \mathbf{n}$ by treatment of tetrabutylammonium fluoride (TBAF) ${ }^{13}$ (method B) and (iii) selective saponification of the methyl ester 60 by treatment with alkali (method C). High yields of the alcohol O hemiester 7 f were obtained in every case. Various other types of alcohol O-hemiesters $7 \mathrm{a}-\mathrm{e}$ and $7 \mathrm{~g}-\mathrm{m}$ were prepared from the corresponding diesters by one of the above methods. In the case of the diesters obtained from primary or secondary alcohols and phenol, methods A and B gave satisfactory results. Method B is the best for removal of the terminal ester having an olefin or a nitrile moiety in the molecule. Method C is effective in deprotecting the terminal methyl ester, especially in the case of the bulky esters obtained from tertiary alcohols. All results of deprotections of the terminal esters and physical data of alcohol O-hemiesters are summarized in Tables 2 and 4, respectively. In this way, we have developed a quite general and convenient synthesis of alcohol O-hemiesters.

Finally, we applied this method to the O-hemiesterification of the anthracycline antibiotic, oxaunomycin, ${ }^{14}$ which was found to be about 100 -fold more active than adriamycin against leukaemic $L-1210$ cultures. ${ }^{15}$ The acylating reagents $4 \mathbf{a}, \mathbf{c}, \mathbf{f}$ smoothly reacted with $7,9-\mathrm{O}$-phenylboranediyl- β-rhodomycinone 8^{14} in the presence of a catalytic amount of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to afford diesters 9 a-c in $80-87 \%$ yield without any acylation of phenolic hydroxy groups. The boronate moiety in diesters 9 was removed by treatment with 2-methylpentane-2,4-diol and acetic acid in acetone to give the desired $10-O$-acyl- β-rhodomycinones $10 a-c$ in high yield. For the preparation of hemiesters $14 a, b$ glycosidation of 1,3 -diols $10 a$, b with the 1,4 -bis- O - $(p$-nitrobenz-oyl)-L-daunosamine derivative 11 using trimethylsilyl trifluoromethanesulfonate (TMSOTf) and molecular sieves (MS) $4 \AA$ in a mixed solvent of anhydrous dichloromethane and diethyl ether at $-15^{\circ} \mathrm{C}^{16}$ gave the $7-O-\alpha$-glycosides $\mathbf{1 2 a}, \mathrm{b}$ in 79 and 77% yield, respectively. The glycosides $12 \mathbf{a}, \mathbf{b}$ were deprotected with 1.2 mole equivalents of $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}$ at $0^{\circ} \mathrm{C}$ in dichloromethane- MeOH to afford 4^{\prime}-hydroxy compounds 13a, b, which were further treated with an excess of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ NaOH at room temperature to give the desired N -(trifluoro-
acetyl)oxaunomycin $10-O$-hemisuccinate $14 a$ and $10-O$-hemipimelate $\mathbf{1 4 b}$ in 51 and 41% yield, respectively (Scheme 2).

Furthermore, we synthesized the oxaunomycin derivatives 19a-c in which the L-daunosamine residue was replaced by not only 2-deoxy-D-erythro-pentopyranose but also 2,6-dideoxy-2-fluoro-L-talopyranose. This is because of the amount of attention that has been paid to the antitumour activities of anthracycline derivatives containing a sugar which has an axial 2^{\prime}-fluoro substituent. ${ }^{17}$ The glycosidations of compounds $\mathbf{1 0 b}, \mathbf{c}$ with the protected sugars 15^{18} and 16 under Koenigs-Knorr conditions afforded the corresponding β-glycosides $17 a$ and α glycosides 17 b , c in $57-80 \%$ yield. These diacetates were deprotected by treatment with 3 mole equivalents of 0.1 mol $\mathrm{dm}^{-3} \mathrm{NaOH}$ to give the $3^{\prime}, 4^{\prime}$-dihydroxy compounds $18 \mathrm{a}-\mathrm{c}$, which were further treated with an excess of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ NaOH at room temperature to yield the desired derivatives $19 \mathrm{a}-\mathrm{c}$ in $56-62 \%$ yield from $17 \mathrm{a}-\mathrm{c}$ (Scheme 3).

The preparation of other oxaunomycin $10-O$-hemiester derivatives and biological testing for activity against tumour cells is in progress. The present acylation and deprotection method opens up a potentially useful method for the O-hemiesterification of other natural products.

Experimental

All b.p.s and m.p.s are uncorrected; m.p.s were measured on a Yanagimoto micro melting point apparatus. Optical rotations were measured with a Perkin-Elmer 241 polarimeter using a 10 cm cell and are given in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. IR spectra were recorded on a JASCO HPIR-102 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were measured on a Varian VXR-200 (200 MHz), a Hitachi R-250HT (250 MHz), or a JEOL JNM-GX500 (500 MHz) spectrometer with $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard. J - and $w_{\frac{1}{2}}-$ values are given in Hz . Mass spectra were obtained on a JEOL JMS-D300 [for electron impact (EI) MS] or a JEOL HX-100 [for fast atom bombardment (FAB) MS] mass spectrometer. E. Merck silica gel 60 (70-230 mesh ASTM) was used for column chromatography and E. Merck precoated TLC plates, silica gel $60 \mathrm{~F}_{254}$, were used for preparative TLC (PLC).

Benzyl 2-(Trimethylsilyl)ethyl Succinate 2a.-Oxalyl dichloride $\left(9.20 \mathrm{~cm}^{3}, 104 \mathrm{mmol}\right)$ was added to a solution of hemiester $1 \mathrm{a}^{8}(7.30 \mathrm{~g}, 35.1 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred below $25^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was concentrated under reduced pressure to give a residue, which was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right)$. A solution of 2-(trimethylsilyl)ethanol $(5.00 \mathrm{~g}, 42.4 \mathrm{mmol})$ in dry pyridine ($50 \mathrm{~cm}^{3}$) was added to the above solution at $-30^{\circ} \mathrm{C}$.

Scheme 2 Reagents: i, $4 \mathrm{a}, 4 \mathrm{c}$ or 4f, cat. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii, 2-methylpentane-2,4-diol, AcOH-acetone- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, TMSOTf, $\mathrm{MS}^{2} \AA \mathrm{~A}^{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{Et}_{2} \mathrm{O}$; iv, $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}$ (1.2 mol equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH} ; \mathrm{v}, 0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}$ (20 mol equiv.), DME

Scheme 3 Reagents: i, yellow $\mathrm{HgO}, \mathrm{HgBr}_{2}, \mathrm{MS} 4 \AA, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii, yellow $\mathrm{HgO}, \mathrm{HgBr}_{2}, \mathrm{MS} 3 \AA, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}(3 \mathrm{~mol}$ equiv.), MeOH ; iv, $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ (40 mol equiv.), MeOH

Table 2 Acylation of alcohols 5 with reagents 4 and subsequent deprotection of diesters 6 to O-hemiesters 7

		5a-j	6a-y			
Run	Alcohol	Conditions	$\begin{aligned} & \text { Yield }{ }^{a} \text { of } \\ & 6\left(R^{1}\right)^{b}(\%) \end{aligned}$	Deprotection method ${ }^{c}$	Structure of O-hemiester	$\begin{aligned} & \text { Yield }^{a} \text { of } \\ & \mathbf{7 (\%)} \end{aligned}$
		4 (mol equiv.), catalyst, time				
1	$\begin{aligned} & \mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{OH} \\ & 5 \mathrm{a} \end{aligned}$	$4 \mathrm{a}(1.2), \mathrm{c} . \mathrm{H}_{2} \mathrm{SO}_{4}, 0.5 \mathrm{~h}$	6a (Bn) (76)	A	$\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{OCO}\left[\mathrm{CH}_{2}\right]_{2} \mathrm{CO}_{2} \mathrm{H}$	7a (88)
2		(2.0), p - $\mathrm{TsOH}, 4 \mathrm{H}$	(Bn) (81)			
3		4b (2.0), c. $\mathrm{H}_{2} \mathrm{SO}_{4}, 11 \mathrm{~h}$	6 b (TMSE) (41)	B		(80)
4		(2.0), p - $\mathrm{TsOH}, 12 \mathrm{~h}$	(TMSE) (75)			
5		4 c (1.2), $\mathrm{c} . \mathrm{H}_{2} \mathrm{SO}_{4}, 2 \mathrm{~h}$	6c (Me) (72)			
6		(2.0), p - $\mathrm{TsOH}, 7 \mathrm{~h}$	(Me) (80)			
7		4d (1.2), c. $\mathrm{H}_{2} \mathrm{SO}_{4}, 0.3 \mathrm{~h}$	6d (Bn) (93)	A	$\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{OCO}\left[\mathrm{CH}_{2}\right]_{5} \mathrm{CO}_{2} \mathrm{H}$	7b (95)
8		(2.0), p - $\mathrm{TsOH}, 1 \mathrm{~h}$	(Bn) (99)			
9		4 e (1.2), c. $\mathrm{H}_{2} \mathrm{SO}_{4}, 0.8 \mathrm{~h}$	6 (TMSE) (94)	B		(85)
10		(2.0), p-TsOH, 1.5 h	(TMSE) (98)			
11		$4 \mathrm{f}(1.2), \mathrm{c} . \mathrm{H}_{2} \mathrm{SO}_{4}, 1.5 \mathrm{~h}$	6 f (Me) (78)			
12		(2.0), p - $\mathrm{TsOH}, 7 \mathrm{~h}$	(Me) (89)			
13	$\begin{aligned} & \mathrm{PhCH}_{2} \mathrm{OH} \\ & \mathbf{5 b} \end{aligned}$	4b (2.0), p - $\mathrm{TsOH}, 10 \mathrm{~h}^{d}$	$\mathbf{6 g}^{e}$ (TMSE) (67)	B	$\mathrm{PhCH}_{2} \mathrm{OCO}\left[\mathrm{CH}_{2}\right]_{2} \mathrm{CO}_{2} \mathrm{H}$	$7 c^{f}(84)$
14		$4 \mathrm{f}(1.2)$, c. $\mathrm{H}_{2} \mathrm{SO}_{4}, 0.7 \mathrm{~h}$	$6 \mathrm{~h}(\mathrm{Me})(70)$			
15		(2.0), p - $\mathrm{TsOH}, 4 \mathrm{~h}$	(Me) (79)			
16 17	$\times \underbrace{\sim 0 \mathrm{OH}}_{5 c}$	4a (2.0), $\mathrm{c} . \mathrm{H}_{2} \mathrm{SO}_{4}, 2 \mathrm{~h}$ $(2.0), p-\mathrm{TsOH}, 9 \mathrm{~h}$	$6 \mathbf{i}(\mathrm{Bn})(72)$ (Bn) (70)	A	$X \Sigma \underbrace{\mu \mathrm{OCO}\left[\mathrm{CH}_{2}\right]_{2} \mathrm{CO}_{2} \mathrm{H}}$	7d (78)
18		4b (2.0), p-TsOH, $8 \mathrm{~h}^{d}$	6j (TMSE) (75)	B		(78)
19		$4 \mathrm{f}(2.0), \mathrm{H}_{2} \mathrm{SO}_{4}, 0.7 \mathrm{~h}$	6k (Me) (82)			
20		(2.0), p - $\mathrm{TsOH}, 3 \mathrm{~h}$	(Me) (88)			
21	 5d	4a (2.0), p - $\mathrm{TsOH}, 4 \mathrm{~h}$	$61(\mathrm{Bn})(77)$	A		7e (98)
22	$\underset{\text { PhCH }}{\text { 2 }} \mathrm{CMe}_{2} \mathrm{OH}$	$4 \mathrm{a}(2.0), p-\mathrm{TsOH}, 6 \mathrm{~h}$	$6 m(B n)(86)$	A	$\mathrm{PhCH}_{2} \mathrm{CMe}_{2} \mathrm{OCO}\left[\mathrm{CH}_{2} \mathrm{l}_{2} \mathrm{CO}_{2} \mathrm{H}\right.$	$\begin{aligned} & 7 f(97) \\ & (88) \end{aligned}$
23		$\text { 4b (2.0), } p-\mathrm{TsOH}, 13 \mathrm{~h}^{d}$	6n (TMSE) (73)	B		
24		4c (2.0), p - $\mathrm{TsOH}, 3 \mathrm{~h}$	60 (Me) (70)	C		(85)
25		$4 \mathrm{f}(2.0), p-\mathrm{TsOH}, 3 \mathrm{~h}$	6p (Me) (75)	C	$\mathrm{PhCH}_{2} \mathrm{CMe}_{2} \mathrm{OCO}\left[\mathrm{CH}_{2}\right]_{5} \mathrm{CO}_{2} \mathrm{H}$	7 g (81)
26		$\begin{aligned} & \text { 4d (2.0), } p \text { - } \mathrm{TsOH}, 4 \mathrm{~h}^{g} \\ & \text { 4f (2.0), } p \text {-TsOH, } 4 \mathrm{~h}^{g} \end{aligned}$	$\begin{aligned} & \text { 6q (Bn) (84) } \\ & \text { 6r }(\mathrm{Me})(79) \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathbf{C} \end{aligned}$		$\begin{aligned} & 7 \mathrm{~h}(92) \\ & (92) \end{aligned}$
27						
28		4b (2.0), p - $\mathrm{TsOH}, 8 \mathrm{~h}^{d}$	6s (TMSE) (65)	B		$7 \mathbf{i}$ (85)
29		4e (2.0), p - $\mathrm{TsOH}, 1 \mathrm{~h}$	6 (TMSE) (92)	B	$\mathrm{OCO}\left[\mathrm{CH}_{2}\right]_{5} \mathrm{CO}_{2} \mathrm{H}$	7j (85)
30	$\mathrm{NC}\left[\mathrm{CH}_{2}\right]_{3} \mathrm{OH}$	4b (2.0), $\mathrm{p}-\mathrm{TsOH}, 8 \mathrm{~h}^{\text {d.g }}$	6 u (TMSE) (65)	B	$\mathrm{NC}\left[\mathrm{CH}_{2}\right]_{3} \mathrm{OCO}\left[\mathrm{CH}_{2} \mathrm{l}_{2} \mathrm{CO}_{2} \mathrm{H}\right.$	7k (82)
31 32		$\mathrm{Aa}(2.0), \mathrm{c} . \mathrm{H}_{2} \mathrm{SO}_{4}, 1 \mathrm{~h}$ (2.0), p - $\mathrm{TsOH}, 4 \mathrm{~h}$	$6 v(\mathrm{Bn})(92)$ $(\mathrm{Bn})(94)$	A	$\xrightarrow{\mathrm{OCO}}\left[\mathrm{CH}_{2}\right]_{2} \mathrm{CO}_{2} \mathrm{H}$	71 (95)
32		$4 \mathrm{~b}(2.0), p-\mathrm{TsOH}, 12 \mathrm{~h}^{d}$	6w (TMSE) (70)	B		(75)
34	$\begin{aligned} & \mathrm{PhOH} \\ & \mathbf{5 j} \end{aligned}$	4a (2.0), c. $\mathrm{H}_{2} \mathrm{SO}_{4}, 2 \mathrm{~h}$	$\begin{aligned} & 6 x(\mathrm{Bn})(81) \\ & (\mathrm{Bn})(82) \\ & 6 \mathrm{y}(\mathrm{Me})(62) \end{aligned}$	A	$\mathrm{PhOCO}\left[\mathrm{CH}_{2}\right]_{2} \mathrm{CO}_{2} \mathrm{H}$	7m (84)
35		(2.0), p - $\mathrm{TsOH}, 3 \mathrm{~h}$				
36		4 f (2.0), p - $\mathrm{TsOH}, 1.3 \mathrm{~h}$				

${ }^{a}$ Isolated yields are given. ${ }^{b}$ Abbreviations: $\mathrm{Bn}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{TMSE}=\mathrm{Me}_{3} \mathrm{Si}^{2}\left[\mathrm{CH}_{2}\right]_{2}{ }^{c}$ Method $\mathrm{A}: \mathrm{H}_{2} / \mathrm{Pd}$, 1,4-dioxane; method B: TBAF, DMF; method $\mathrm{C}: \mathrm{NaOH}$, aq. MeOH. ${ }^{d}$ Carried out at $40{ }^{\circ} \mathrm{C} .{ }^{e}$ This compound is identical with 2a. ${ }^{f}$ This compound is identical with 1a. ${ }^{g}$ In the work-up, the treatment with conc. HCl was omitted.

After being stirred for 1 h the mixture was concentrated under reduced pressure. The residue was acidified with 5% aq. HCl and extracted with EtOAc. The extract was washed with saturated aq. NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed on silica gel [hexane- $\mathrm{Et}_{2} \mathrm{O}$ (14:1)] to give the title compound 2a ($6.0 \mathrm{~g}, 56 \%$) as an oil. Physical data are shown in Table 3 ($\mathbf{6 g} \equiv 2 \mathrm{a}$).

Benzyl 2-(Trimethylsilyl)ethyl Pimelate 2d.-Compound 2d ($781 \mathrm{mg}, 56 \%$) was prepared from half-ester $1 \mathrm{~d}^{10}(1.00 \mathrm{~g}, 4.00$ mmol), oxalyl dichloride ($1.52 \mathrm{~g}, 12.0 \mathrm{mmol}$), 2-(trimethylsilyl)ethanol ($520 \mathrm{mg}, 4.40 \mathrm{mmol}$) and pyridine ($350 \mathrm{mg}, 4.40$ mmol), as an oil, b.p. $165-175^{\circ} \mathrm{C} / 0.28 \mathrm{mmHg}$ (bath temperature $) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.03 ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}$), 0.9-1.05 ($2 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2}$), 1.2-1.5 ($2 \mathrm{H}, \mathrm{m}$, CH_{2}), $1.5-1.8\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2\right), 2.26$ and $2.36(2 \mathrm{H}$ each, $2 \mathrm{t}, J$

Table 3 Physical data of diesters 6

Compound	$\begin{aligned} & \text { B.p. } /{ }^{\circ} \mathrm{C}^{a} \\ & \text { (mmHg) } \end{aligned}$	$\begin{aligned} & v_{\max }(C \\ & \mathrm{cm}^{-1} \end{aligned}$	$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$	Formula	Found (\%) (Required)	
		$\mathrm{C}=0$			C	H
6 a	b	1725	$\begin{aligned} & 2.5-2.75(4 \mathrm{H}, \mathrm{~m}), 2.91(2 \mathrm{H}, \mathrm{t}, J 7.0), 4.29(2 \mathrm{H}, \mathrm{t}, J 7.0), \\ & 5.12(2 \mathrm{H}, \mathrm{~s}), 7.1-7.4(10 \mathrm{H}, \mathrm{~m}) \end{aligned}$	$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4}$	$\begin{gathered} 312.1352^{c} \\ (312.1359) \end{gathered}$	
6b	$\begin{aligned} & 140-150 \\ & (0.30) \end{aligned}$	1720	$\begin{aligned} & 0.04(9 \mathrm{H}, \mathrm{~s}), 0.9-1.1(2 \mathrm{H}, \mathrm{~m}), 2.5-2.7(4 \mathrm{H}, \mathrm{~m}), 2.94(2 \mathrm{H}, \mathrm{t}, \\ & J 7.0), 4.1-4.3(2 \mathrm{H}, \mathrm{~m}), 4.31(2 \mathrm{H}, \mathrm{t}, J 7.0), 7.1-7.4(5 \mathrm{H}, \mathrm{~m}) \end{aligned}$	$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Si}$	$\begin{gathered} 63.45 \\ (63.31) \end{gathered}$	$\begin{aligned} & 8.0 \\ & (8.13) \end{aligned}$
6 c	$\begin{aligned} & 150-155 \\ & (0.30) \end{aligned}$	1720	$\begin{aligned} & 2.61(4 \mathrm{H}, \mathrm{~s}), 2.94(2 \mathrm{H}, \mathrm{t}, J 7.0), 3.68(3 \mathrm{H}, \mathrm{~s}), 4.31(2 \mathrm{H}, \mathrm{t}, J \\ & 7.0), 7.1-7.4(5 \mathrm{H}, \mathrm{~m}) \end{aligned}$	$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$	$\begin{gathered} 65.85 \\ (66.08) \end{gathered}$	$\begin{aligned} & 7.0 \\ & (6.83) \end{aligned}$
6d	$\begin{aligned} & 155-165 \\ & (0.18) \end{aligned}$	1725	1.2-1.4 ($2 \mathrm{H}, \mathrm{m}$), 1.5-1.8 ($4 \mathrm{H}, \mathrm{m}$), 2.2-2.4 ($4 \mathrm{H}, \mathrm{m}$), 2.92 (2 $\mathrm{H}, \mathrm{t}, J 7.0), 4.28(2 \mathrm{H}, \mathrm{t}, J 7.0), 5.11(2 \mathrm{H}, \mathrm{s}), 7.1-7.5(10 \mathrm{H}$, m)	$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4}$	$\begin{gathered} 74.3 \\ (74.55) \end{gathered}$	$\begin{gathered} 7.45 \\ (7.39) \end{gathered}$
6 e	$\begin{aligned} & 135-145 \\ & (0.30) \end{aligned}$	1725	$0.04(9 \mathrm{H}, \mathrm{s}), 0.9-1.1(2 \mathrm{H}, \mathrm{m}), 1.2-1.4(2 \mathrm{H}, \mathrm{m}), 1.5-1.7(4$ $\mathrm{H}, \mathrm{m}), 2.2-2.4(4 \mathrm{H}, \mathrm{m}), 2.93(2 \mathrm{H}, \mathrm{t}, J 7.0), 4.1-4.25(2 \mathrm{H}$, $\mathrm{m}), 4.29$ ($2 \mathrm{H}, \mathrm{t}, J 7.0$), $7.1-7.4(5 \mathrm{H}, \mathrm{m})$	$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}$	$\begin{gathered} 364.2071^{c} \\ (364.2070) \end{gathered}$	
6 f	$\begin{aligned} & 160-170 \\ & (0.40) \end{aligned}$	1725	1.2-1.4 ($2 \mathrm{H}, \mathrm{m}$), 1.5-1.7 ($4 \mathrm{H}, \mathrm{m}$), 2.29 ($4 \mathrm{H}, \mathrm{t}, J 7.1$), 2.93 $(2 \mathrm{H}, \mathrm{t}, J 7.0), 3.66(3 \mathrm{H}, \mathrm{s}), 4.29(2 \mathrm{H}, \mathrm{t}, J 6.9), 7.1-7.3(5 \mathrm{H}$, m)	$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}$	$\begin{gathered} 68.95 \\ (69.04) \end{gathered}$	$\begin{gathered} 8.05 \\ (7.97) \end{gathered}$
$\mathbf{6 g}(\equiv \mathbf{2 a})$	$\begin{aligned} & 140-150 \\ & (0.45) \end{aligned}$	1720	$\begin{aligned} & 0.03(9 \mathrm{H}, \mathrm{~s}), 0.9-1.1(2 \mathrm{H}, \mathrm{~m}), 2.5-2.8(4 \mathrm{H}, \mathrm{~m}), 4.1-4.3(2 \\ & \mathrm{H}, \mathrm{~m}), 5.14(2 \mathrm{H}, \mathrm{~s}), 7.35(5 \mathrm{H}, \mathrm{~s}) \end{aligned}$	$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Si}$	$\begin{gathered} 62.15 \\ (62.30) \end{gathered}$	$\begin{gathered} 7.75 \\ (7.84) \end{gathered}$
6h	$\begin{aligned} & 150-155 \\ & (0.35) \end{aligned}$	1725	$\begin{aligned} & 1.2-1.4(2 \mathrm{H}, \mathrm{~m}), 1.5-1.7(4 \mathrm{H}, \mathrm{~m}), 2.2-2.4(4 \mathrm{H}, \mathrm{~m}), 3.66(3 \\ & \mathrm{H}, \mathrm{~s}), 5.11(2 \mathrm{H}, \mathrm{~s}), 7.35(5 \mathrm{H}, \mathrm{~s}) \end{aligned}$	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$	$\begin{gathered} 68.05 \\ (68.16) \end{gathered}$	$\begin{gathered} 7.5 \\ (7.63) \end{gathered}$
$6 i$	$\begin{aligned} & 180-190 \\ & (0.50) \end{aligned}$	1725	$0.85(9 \mathrm{H}, \mathrm{s}), 0.9-2.1(9 \mathrm{H}, \mathrm{m}), 2.55-2.75(4 \mathrm{H}, \mathrm{m}), 4.55-$ $4.70\left({ }_{7}^{5} \mathrm{H}, \mathrm{m}\right), 5.00-5.05\left({ }_{7}^{2} \mathrm{H}, \mathrm{m}\right), 5.13(2 \mathrm{H}, \mathrm{s}), 7.3-7.4(5 \mathrm{H}$, m)	$\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{4}$	$\begin{gathered} 72.55 \\ (72.80) \end{gathered}$	$\begin{gathered} 8.7 \\ (8.73) \end{gathered}$
6j	$\begin{aligned} & 120-130 \\ & (0.30) \end{aligned}$	1720	$0.04(9 \mathrm{H}, \mathrm{s}), 0.85\left(\frac{5}{7} \times 9 \mathrm{H}, \mathrm{s}\right), 0.86\left(\frac{2}{7} \times 9 \mathrm{H}, \mathrm{s}\right) 0.9-2.1(11$ $\mathrm{H}, \mathrm{m}), 2.56-2.65(4 \mathrm{H}, \mathrm{m}), 4.12-4.24(2 \mathrm{H}, \mathrm{m}), 4.55-4.73\left(\frac{5}{7}\right.$ $\mathrm{H}, \mathrm{m}), 4.99-5.07\left(\frac{2}{7} \mathrm{H}, \mathrm{m}\right)$	$\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}$	$\begin{gathered} 63.95 \\ (64.00) \end{gathered}$	$\begin{gathered} 10.05 \\ (10.18) \end{gathered}$
6k	$\begin{aligned} & 120-130 \\ & (0.28) \end{aligned}$	1720	$\begin{aligned} & 0.85\left(\frac{5}{7} \times 9 \mathrm{H}, \mathrm{~s}\right), 0.86\left(\frac{2}{7} \times 9 \mathrm{H}, \mathrm{~s}\right), 0.9-2.1(15 \mathrm{H}, \mathrm{~m}), 2.2- \\ & 2.35(4 \mathrm{H}, \mathrm{~m}), 3.67(3 \mathrm{H}, \mathrm{~s}), 4.55-4.65\left(\frac{5}{7} \mathrm{H}, \mathrm{~m}\right), 4.96-5.04\left(\frac{2}{7}\right. \\ & \mathrm{H}, \mathrm{~m}) \end{aligned}$	$\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{4}$	$\begin{gathered} 69.05 \\ (69.19) \end{gathered}$	$\begin{gathered} 10.25 \\ (10.32) \end{gathered}$
6	$\begin{aligned} & 180-190 \\ & (0.23) \end{aligned}$	1720	$\begin{aligned} & 0.85-1.05(1 \mathrm{H}, \mathrm{~m}), 1.2-1.45(4 \mathrm{H}, \mathrm{~m}), 1.45-1.80(2 \mathrm{H}, \mathrm{~m}), \\ & 1.85-2.05(1 \mathrm{H}, \mathrm{~m}), 2.1-2.3(1 \mathrm{H}, \mathrm{~m}), 2.35-2.5(1 \mathrm{H}, \mathrm{~m}), \\ & 2.65-2.75(4 \mathrm{H}, \mathrm{~m}), 4.85-5.00(1 \mathrm{H}, \mathrm{~m}), 5.13(2 \mathrm{H}, \mathrm{~s}), 7.35(5 \\ & \mathrm{H}, \mathrm{~s}) \end{aligned}$	$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}$	$\begin{gathered} 302.1479^{c} \\ (302.1518) \end{gathered}$	
6 m	b	1720	$\begin{aligned} & 1.42(6 \mathrm{H}, \mathrm{~s}), 2.5-2.7(4 \mathrm{H}, \mathrm{~m}), 3.03(2 \mathrm{H}, \mathrm{~s}), 5.13(2 \mathrm{H}, \mathrm{~s}) \text {, } \\ & 7.1-7.4(10 \mathrm{H}, \mathrm{~m}) \end{aligned}$	$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4}$	$\begin{gathered} 74.0 \\ (74.09) \end{gathered}$	$\begin{gathered} 7.2 \\ (7.11) \end{gathered}$
6 n	$\begin{aligned} & 130-140 \\ & (0.40) \end{aligned}$	1715	$\begin{aligned} & 0.04(9 \mathrm{H}, \mathrm{~s}), 0.9-1.1(2 \mathrm{H}, \mathrm{~m}), 1.45(6 \mathrm{H}, \mathrm{~s}), 2.55(4 \mathrm{H}, \mathrm{~s}), \\ & 3.06(2 \mathrm{H}, \mathrm{~s}), 4.1-4.3(2 \mathrm{H}, \mathrm{~m}), 7.1-7.4(5 \mathrm{H}, \mathrm{~m}) \end{aligned}$	$\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Si}$	$\begin{gathered} 65.0 \\ (65.10) \end{gathered}$	$\begin{gathered} 8.65 \\ (8.63) \end{gathered}$
60	$\begin{aligned} & 185-190 \\ & (0.30) \end{aligned}$	1715	$\begin{aligned} & 1.44(6 \mathrm{H}, \mathrm{~s}), 2.56(4 \mathrm{H}, \mathrm{~s}), 3.05(2 \mathrm{H}, \mathrm{~s}), 3.68(3 \mathrm{H}, \mathrm{~s}), 7.1- \\ & 7.4(5 \mathrm{H}, \mathrm{~m}) \end{aligned}$	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$	$\begin{array}{r} 67.95 \\ (68.16) \end{array}$	$\begin{gathered} 7.65 \\ (7.63) \end{gathered}$
6p	$\begin{aligned} & 150-170 \\ & (0.50) \end{aligned}$	1715	1.2-1.4 ($2 \mathrm{H}, \mathrm{m}$), $1.44(6 \mathrm{H}, \mathrm{s}), 1.5-1.7(4 \mathrm{H}, \mathrm{m}), 2.22(2 \mathrm{H}, \mathrm{t}$, $J 7.4), 2.30(2 \mathrm{H}, \mathrm{t}, J 7.4), 3.05(2 \mathrm{H}, \mathrm{s}), 3.66(3 \mathrm{H}, \mathrm{s}), 7.15-$ 7.35 ($5 \mathrm{H}, \mathrm{m}$)	$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4}$	$\begin{array}{r} 70.35 \\ (70.56) \end{array}$	$\begin{gathered} 8.45 \\ (8.55) \end{gathered}$
69	$\begin{aligned} & 165-170 \\ & (0.20) \end{aligned}$	1725	1.0-2.0(14 H, m), $1.45(3 \mathrm{H}, \mathrm{s}), 2.05-2.20(2 \mathrm{H}, \mathrm{m}), 2.24(2$ $\mathrm{H}, \mathrm{t}, J 7.3$), $2.37(2 \mathrm{H}, \mathrm{t}, J 7.3), 5.11(2 \mathrm{H}, \mathrm{s}), 7.3-7.4(5 \mathrm{H}$, m)	$\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{4}$	$\begin{gathered} 72.4 \\ (72.80) \end{gathered}$	$\begin{gathered} 8.8^{d} \\ (8.73) \end{gathered}$
6 r	$\begin{aligned} & 140-145 \\ & (0.36) \end{aligned}$	1720	$\begin{aligned} & 1.2-1.7(14 \mathrm{H}, \mathrm{~m}), 1.46(3 \mathrm{H}, \mathrm{~s}), 2.05-2.4(6 \mathrm{H}, \mathrm{~m}), 3.67(3 \\ & \mathrm{H}, \mathrm{~s}) \end{aligned}$	$\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{4}$	$\begin{gathered} 66.5 \\ (66.63) \end{gathered}$	$\begin{gathered} 9.75 \\ (9.69) \end{gathered}$
$6 s$	$\begin{aligned} & 125-135 \\ & (0.51) \end{aligned}$	1720	$0.04(9 \mathrm{H}, \mathrm{s}), 0.9-1.1(2 \mathrm{H}, \mathrm{m}), 1.2-2.2(7 \mathrm{H}, \mathrm{m}), ~ 2.5-2.7(4$ $\mathrm{H}, \mathrm{m}), 4.00(2 \mathrm{H}, \mathrm{d}, J 6.4), 4.1-4.3(2 \mathrm{H}, \mathrm{m}), 5.6-5.8(2 \mathrm{H}$, m)	$\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si}$	$\begin{gathered} 61.25 \\ (61.50) \end{gathered}$	$\begin{aligned} & 9.0 \\ & (9.03) \end{aligned}$
6t	$\begin{aligned} & 145-150 \\ & (0.32) \end{aligned}$	1720	$0.04(9 \mathrm{H}, \mathrm{s}), 0.9-1.05(2 \mathrm{H}, \mathrm{m}), 1.2-2.4(13 \mathrm{H}, \mathrm{m}), 2.28$ and 2.32 (2 H each, $2 \mathrm{t}, J 7.1$), 3.97 ($2 \mathrm{H}, \mathrm{d}, J 6.4$), 4.1-4.3 (2 H , m), 5.6-5.7 ($2 \mathrm{H}, \mathrm{m}$)	$\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}$	$\begin{aligned} & 64.0 \\ & (64.36) \end{aligned}$	$\begin{gathered} 9.55 \\ (9.67) \end{gathered}$
6u	$\begin{aligned} & 140-145 \\ & (0.32) \end{aligned}$	1725	$\begin{aligned} & 0.04(9 \mathrm{H}, \mathrm{~s}), 0.9-1.1(2 \mathrm{H}, \mathrm{~m}), 1.9-2.2(2 \mathrm{H}, \mathrm{~m}), 2.47(2 \mathrm{H}, \mathrm{t}, \\ & J 7.1), 2.61(4 \mathrm{H}, \mathrm{~s}), 4.1-4.3(2 \mathrm{H}, \mathrm{~m}), 4.23(2 \mathrm{H}, \mathrm{t}, J 6.0) \end{aligned}$	$\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Si}$	$\begin{gathered} 54.5 \\ (54.71) \end{gathered}$	$\begin{gathered} 8.0^{e} \\ (8.12) \end{gathered}$
6v	$\begin{aligned} & 170-180 \\ & (0.50) \end{aligned}$	$\begin{aligned} & 1790, \\ & 1735 \end{aligned}$	$\begin{aligned} & 1.09(3 \mathrm{H}, \mathrm{~s}), 1.18(3 \mathrm{H}, \mathrm{~s}), 2.6-2.9(4 \mathrm{H}, \mathrm{~m}), 4.02(2 \mathrm{H}, \mathrm{~s}) \text {, } \\ & 5.14(2 \mathrm{H}, \mathrm{~s}), 5.36(1 \mathrm{H}, \mathrm{~s}), 7.34(5 \mathrm{H}, \mathrm{~s}) \end{aligned}$	$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{6}$	$\begin{gathered} 63.45 \\ (63.74) \end{gathered}$	$\begin{gathered} 6.3 \\ (6.29) \end{gathered}$
6w	$\begin{aligned} & 135-145 \\ & (0.35) \end{aligned}$	$\begin{aligned} & 1790, \\ & 1750, \\ & 1725 \end{aligned}$	$0.04(9 \mathrm{H}, \mathrm{s}), 0.9-1.1(2 \mathrm{H}, \mathrm{m}), 1.13$ and 1.21 (3 H each, 2 s), 2.6-2.9 ($4 \mathrm{H}, \mathrm{m}$), $4.04(2 \mathrm{H}, \mathrm{d}), 4.1-4.3(2 \mathrm{H}, \mathrm{m}), 5.38(1 \mathrm{H}$, s)	$\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Si}$	$\begin{gathered} 54.15 \\ (54.52) \end{gathered}$	$\begin{gathered} 7.8^{f} \\ (7.93) \end{gathered}$
6x	$\begin{aligned} & 160-170^{g} \\ & (0.20) \end{aligned}$	1730	2.7-3.0 (4 H, m), 5.16 ($2 \mathrm{H}, \mathrm{s}$), 7.0-7.5 ($10 \mathrm{H}, \mathrm{m}$)	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4}$	$\begin{gathered} 71.8 \\ (71.82) \end{gathered}$	$\begin{gathered} 5.6 \\ (5.67) \end{gathered}$
6y	$\begin{aligned} & 140-150 \\ & (0.20) \end{aligned}$	1720	1.35-1.5 (2 H, m), 1.6-1.9 (4 H, m), 2.35 (2 H, t, J7.4), 2.56 ($2 \mathrm{H}, \mathrm{t}, J 7.4$), 3.67 ($3 \mathrm{H}, \mathrm{s}$), 7.07 ($2 \mathrm{H}, \mathrm{d}, J 8.6$), 7.15-7.30 (1 $\mathrm{H}, \mathrm{m}), 7.37(2 \mathrm{H}, \mathrm{t}, J 7.9)$	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$	$\begin{aligned} & 66.9 \\ & (67.18) \end{aligned}$	$\begin{gathered} 7.3 \\ (7.25) \end{gathered}$

[^2]Table 4 Physical data of alcohol O-hemiesters 7

Compound	$\begin{aligned} & \text { B.p. } /{ }^{\circ} \mathrm{C}(\mathrm{mmHg})^{a} \\ & \text { or m.p. } /{ }^{\circ} \mathrm{C} \\ & \text { (recrystalln. solvent) } \end{aligned}$	$\frac{\begin{array}{l} v_{\max }\left(\mathrm{CHCl}_{3}\right) / \\ \mathrm{cm}^{-1} \end{array}}{\mathrm{C}=\mathrm{O}}$	$\delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right)$	Formula	Found (\%) (Required)	
					C	H
7a	$70-70.5$ (hexane)	1720	$\begin{aligned} & 2.5-2.7(4 \mathrm{H}, \mathrm{~m}), 2.94(2 \mathrm{H}, \mathrm{t}, J 7.0), 4.32(2 \mathrm{H}, \mathrm{t}, J \\ & 7.0), 7.1-7.4(5 \mathrm{H}, \mathrm{~m}) \end{aligned}$	$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$	$\begin{gathered} 64.4 \\ (64.85) \end{gathered}$	$\begin{gathered} 6.45^{b} \\ (6.35) \end{gathered}$
7b	$\begin{aligned} & 125-135 \\ & (0.22) \end{aligned}$	1710	1.2-1.4 (2 H, m), 1.5-1.7 (4 H, m), 2.2-2.4 (4 H, $\mathrm{m}), 2.93(2 \mathrm{H}, \mathrm{t}, J 7.0), 4.29(2 \mathrm{H}, \mathrm{t}, J 7.0), 7.1-7.4$ ($5 \mathrm{H}, \mathrm{m}$)	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$	$\begin{aligned} & 67.7 \\ & (68.16) \end{aligned}$	$\begin{gathered} 7.35^{〔} \\ (7.63) \end{gathered}$
7c ($=1 \mathrm{a}$)	$57-58^{d}$ (hexane)	1715	$2.69(4 \mathrm{H}, \mathrm{s}), 5.14(2 \mathrm{H}, \mathrm{s}), 7.35(5 \mathrm{H}, \mathrm{s})$	$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$		
7d	$\begin{aligned} & 130-135 \\ & (0.30) \end{aligned}$	1710	$0.85\left(\frac{5}{7} \times 9 \mathrm{H}, \mathrm{s}\right), 0.86\left(\frac{2}{7} \times 9 \mathrm{H}, \mathrm{s}\right), 0.9-2.1(9 \mathrm{H}$, $\mathrm{m}), 2.5-2.8(4 \mathrm{H}, \mathrm{m}), 4.5-4.8\left(\frac{5}{7} \mathrm{H}, \mathrm{m}\right), 5.0-5.1\left(\frac{2}{7}\right.$ H, m)	$\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{4}$	$\begin{array}{r} 65.35 \\ (65.60) \end{array}$	$\begin{aligned} & 9.3 \\ & (9.44) \end{aligned}$
7e	$\begin{aligned} & 95-105 \\ & (0.22) \end{aligned}$	1720	0.9-1.1 ($1 \mathrm{H}, \mathrm{m}$), 1.2-1.5 ($4 \mathrm{H}, \mathrm{m}$), 1.5-1.9 (2 H , $\mathrm{m})$, 1.9-2.1 ($1 \mathrm{H}, \mathrm{m}$), 2.1-2.3 ($1 \mathrm{H}, \mathrm{m}$), 2.4-2.5 (1 $\mathrm{H}, \mathrm{m}), 2.5-2.8(4 \mathrm{H}, \mathrm{m}), 4.9-5.1(1 \mathrm{H}, \mathrm{m})$	$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4}$	$\begin{gathered} 61.8 \\ (62.25) \end{gathered}$	$\begin{gathered} 7.55^{e} \\ (7.60) \end{gathered}$
7 f	65-66 (hexane)	1705	$\begin{aligned} & 1.44(6 \mathrm{H}, \mathrm{~s}), 2.5-2.7(4 \mathrm{H}, \mathrm{~m}), 3.06(2 \mathrm{H}, \mathrm{~s}), 7.1- \\ & 7.4(5 \mathrm{H}, \mathrm{~m}) \end{aligned}$	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$	$\begin{gathered} 66.95 \\ (67.18) \end{gathered}$	$\begin{gathered} 7.3 \\ (7.25) \end{gathered}$
7g	$\begin{aligned} & 185-95 \\ & (0.50) \end{aligned}$	1700	1.2-1.4 ($2 \mathrm{H}, \mathrm{m}$), $1.44(6 \mathrm{H}, \mathrm{s}), 1.5-1.8(4 \mathrm{H}, \mathrm{m})$, $2.22(2 \mathrm{H}, \mathrm{t}, J 7.6), 2.29(2 \mathrm{H}, \mathrm{t}, J 7.6), 3.05(2 \mathrm{H}$, s), 7.1-7.4 ($5 \mathrm{H}, \mathrm{m}$)	$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}$		$\begin{aligned} & 1655^{f} \\ & \hline 1672) \end{aligned}$
7h	g	1710	$\begin{aligned} & 1.1-1.8(14 \mathrm{H}, \mathrm{~m}), 1.46(3 \mathrm{H}, \mathrm{~s}), 2.0-2.2(2 \mathrm{H}, \mathrm{~m}), \\ & 2.26(2 \mathrm{H}, \mathrm{t}, J 7.4), 2.36(2 \mathrm{H}, \mathrm{t}, J 7.4) \end{aligned}$	$\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{4}$	$\begin{gathered} 65.15 \\ (65.59) \end{gathered}$	$\begin{array}{r} 9.35^{h} \\ (9.44) \end{array}$
$7 \mathbf{i}$	$\begin{aligned} & 140-150 \\ & (0.50) \end{aligned}$	1710	$\begin{aligned} & 1.15-1.45(1 \mathrm{H}, \mathrm{~m}), 1.6-2.2(6 \mathrm{H}, \mathrm{~m}), 2.5-2.8(4 \\ & \mathrm{H}, \mathrm{~m}), 4.01(2 \mathrm{H}, \mathrm{~d}, J 6.4), 5.55-5.8(2 \mathrm{H}, \mathrm{~m}) \end{aligned}$	$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4}$		1075^{\prime}
$7 \mathbf{j}$	$\begin{aligned} & 135-145 \\ & (0.30) \end{aligned}$	1710	1.2-2.2 ($13 \mathrm{H}, \mathrm{m}$), 2.33 and 2.36 (2 H each, $2 \mathrm{t}, J$ 7.1), 3.98 ($2 \mathrm{H}, \mathrm{d}, J 6.2$), $5.5-5.8(2 \mathrm{H}, \mathrm{m})$	$\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4}$		$\begin{aligned} & 1525^{f} \\ & .1518) \end{aligned}$
7k	g	1730	$1.9-2.1(2 \mathrm{H}, \mathrm{~m}), 2.47(2 \mathrm{H}, \mathrm{t}, J 7.1), 2.5-2.8(4 \mathrm{H},$ $\mathrm{m}), 4.24(2 \mathrm{H}, \mathrm{t}, J 6.0), 6.6-7.4(1 \mathrm{H}, \mathrm{br})$	$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{4}$		0683^{f}
71	$\begin{aligned} & 170-180 \\ & (0.40) \end{aligned}$	$\begin{aligned} & 1790, \\ & 1750, \\ & 1720 \end{aligned}$	1.11 and $1.20(3 \mathrm{H}$ each, 2 s$)$, 2.6-2.9 ($4 \mathrm{H}, \mathrm{m}$), $4.04(2 \mathrm{H}, \mathrm{d}, J 1.8), 5.39(1 \mathrm{H}, \mathrm{s})$	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{6}$		$\begin{aligned} & .0780^{f} \\ & .0788) \end{aligned}$
7 m	$\begin{aligned} & 96.5-97.5^{i} \\ & \text { (hexane) } \end{aligned}$	$\begin{aligned} & 1755, \\ & 1715 \end{aligned}$	2.7-3.0 ($4 \mathrm{H}, \mathrm{m}$), 7.0-7.5 $(5 \mathrm{H}, \mathrm{m})$	$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$		

${ }^{a}$ Bath temperature. ${ }^{b}$ High-resolution (EI) data (Found: M^{+}, 222.0908. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$ requires M, 222.0892). ${ }^{c}$ High-resolution (EI) data (Found: M^{+}, 264.1376. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$ requires $\mathrm{M}, 264.1361$). ${ }^{d}$ Lit., ${ }^{8} \mathrm{~m} . \mathrm{p} .58-59{ }^{\circ} \mathrm{C} .{ }^{e}$ High-resolution (EI) data (Found: $\mathrm{M}^{+}, 212.1064 . \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4}$ requires M , 212.1049. ${ }^{f}$ High-resolution (EI) data. ${ }^{g}$ Oil. Partial decomposition occurred on distillation. ${ }^{h}$ High-resolution (FAB, positive) data (Found: ${ }^{+}+\mathrm{H}$, 257.1775. $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{O}_{4}$ requires $\mathrm{M}+\mathrm{H}, 257.1753$). ${ }^{\text {i }}$ Lit., ${ }^{19} 97-98^{\circ} \mathrm{C}$.
7.5, $\left.\mathrm{COCH}_{2} \times 2\right), 4.1-4.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 5.11(2 \mathrm{H}$, s, benzyl CH_{2}) and 7.3-7.5 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) (Found: C, 65.05; H, 8.65. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4}$ requires $\mathrm{C}, 65.10 ; \mathrm{H}, 8.62 \%$).

2-(Trimethylsilyl)ethyl Hydrogen Succinate 1b.-Pd-black

 $(70.0 \mathrm{mg})$ was added to a solution of compound $2 \mathrm{a}(6.00 \mathrm{~g}, 19.5$ mmol) in 1,4-dioxane ($40 \mathrm{~cm}^{3}$), and the mixture was subjected to catalytic hydrogenation under hydrogen for 15 h . The catalyst was filtered off and the filtrate was concentrated under reduced pressure to give an oil, which was distilled to give the title compound $\mathbf{1 b}(3.30 \mathrm{~g}, 82 \%)$ as an oil, b.p. $132-133{ }^{\circ} \mathrm{C} / 0.6 \mathrm{mmHg} ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1710 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$; CDCl_{3}) $0.04\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right)$, $0.9-1.1\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2}\right)$, 2.5-2.8 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$) and 4.1-4.3 ($2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}$) [Found: M^{+}(EI), 218.0975; C, 49.05; H, 8.25. $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Si}$ requires $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Si}$ requires $\mathrm{M}, 218.0981 ; \mathrm{C}, 49.51 ; \mathrm{H}$, $8.31 \%]$.Compound 1 b was also obtained by the following method. A mixture of succinic anhydride $3(11.5 \mathrm{~g}, 115 \mathrm{mmol}$), 2-(trimethylsilyl)ethanol ($10.0 \mathrm{~g}, 84.7 \mathrm{mmol}$) and pyridine $(6.70 \mathrm{~g}$, 84.8 mmol) was heated at $100^{\circ} \mathrm{C}$ for 5 h . After concentration of the reaction mixture under reduced pressure, saturated aq. NaHCO_{3} was added to the residue. The separated oil was acidified to pH 1 with 10% aq. HCl and extracted with EtOAc. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. CHCl_{3} was added to the residue and the mixture was filtered. The filtrate was concentrated under reduced pressure to give an oil, which was distilled to give the title compound 1 b ($14.2 \mathrm{~g}, 77 \%$) as an oil.

2-(Trimethylsilyl)ethyl Hydrogen Pimelate 1e.-Compound 1e $(7.90 \mathrm{~g}, 95 \%)$ was prepared from diester $2 \mathrm{~d}(14.0 \mathrm{~g}, 40.0 \mathrm{mmol})$ and Pd-black (550 mg), as an oil, b.p. $170-175^{\circ} \mathrm{C} / 0.30 \mathrm{mmHg}$; $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} \quad 1720-1705 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.03$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}$), 0.9-1.05 ($2 \mathrm{H}, \mathrm{m}, \mathrm{SiCH}_{2}$), 1.25-1.5 ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 1.55-1.75\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2\right), 2.28$ and $2.35(2 \mathrm{H}$ each, 2 t , $\left.J 7.3, \mathrm{COCH}_{2} \times 2\right)$ and $4.05-4.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right)$ [Found: M^{+} (EI), 260.1438. $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Si}$ requires $\mathrm{M}, 260.1411$].

General Procedures for Formation of Isopropenyl Ester: from Half-esters 1a-f and Isopropenyl Acetate (Route A).-Benzyl isopropenyl succinate $\mathbf{4 a}$. A mixture of compound $1 \mathrm{a}(20.1 \mathrm{~g}, 96.6$ mmol), isopropenyl acetate ($53.1 \mathrm{~g}, 531 \mathrm{mmol}$), $\mathrm{Hg}(\mathrm{OAc})_{2}(920$ $\mathrm{mg}, 2.90 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\left(0.50 \mathrm{~cm}^{3}, 4.1 \mathrm{mmol}\right)$ was stirred at $30^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{~N}\left(0.6 \mathrm{~cm}^{3}\right)$ was added. After concentration under reduced pressure, the residue was filtered through Florisil ($200 \mathrm{~cm}^{3}$) in a short column with the aid of hexane. After concentration under reduced pressure, the residual oil was distilled to give the title isopropenyl ester $4 \mathrm{a}(12.3 \mathrm{~g}, 51 \%)$ as an oil. Data are given in Table 1.

Compounds $\mathbf{4 c}$ and $\mathbf{4 f}$ were obtained similarly as described for the preparation of compound 4 a . Compound 4 b was purified by the preceding Florisil short-column chromatography [hexane$\left.\mathrm{Et}_{2} \mathrm{O}(2: 1)\right]$, silical gel column chromatography [hexane- $\mathrm{Et}_{2} \mathrm{O}$ (7:1)], and distillation under reduced pressure. Compound 4d waspurified by the precedingFlorisilshort-column chromatography (hexane), silica gel column chromatography [hexane- $\mathrm{Et}_{2} \mathrm{O}$ (10:1)], and distillation under reduced pressure. Compound $4 \mathbf{e}$
was purified by the precedingFlorisil short-column chromatography (hexane), silica gel column chromatography [hexane- $\mathrm{Et}_{2} \mathrm{O}$ (5:1)], and distillation under reduced pressure.

From Acid Chlorides of Hemiesters 1a, c-f and Potassium Enolate of Acetone (Route B).-Isopropenyl methyl succinate $\mathbf{4 c}$. Under nitrogen, KH ($727 \mathrm{mg}, 18.2 \mathrm{mmol}$) was suspended in dry DME ($16 \mathrm{~cm}^{3}$) below $0^{\circ} \mathrm{C}$. To this stirred suspension was added dropwise a solution of anhydrous acetone ($1.33 \mathrm{~cm}^{3}, 18.1 \mathrm{mmol}$) in dry DME ($16 \mathrm{~cm}^{3}$) with cooling below $0^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 30 min . A solution of this potassium enolate was added slowly to a solution of the respective acid chloride [prepared from the reaction of compound $1 \mathrm{c}(2.26 \mathrm{~g}, 17.1 \mathrm{mmol})$ and oxalyl dichloride (3.70 $\mathrm{cm}^{3}, 42.4 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right.$) below room temperature and successive removal of excess of $(\mathrm{COCl})_{2}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ below $30^{\circ} \mathrm{C}$ under reduced pressure] in DME ($15 \mathrm{~cm}^{3}$) with cooling below $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature during 2 h and was stirred for 7 h . $\mathrm{Et}_{2} \mathrm{O}$ and water were added to the mixture and the organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated under reduced pressure, and purified by chromatography on silica gel [hex-ane- $\mathrm{Et}_{2} \mathrm{O}$ (7:1)] to give the title isopropenyl ester $4 \mathrm{c}(1.12 \mathrm{~g}$, 38%) as an oil.

Compounds 4a, d-f were purified by column chromatography on silica gel $\left\{4 \mathrm{a}\right.$ [hexane- $\mathrm{Et}_{2} \mathrm{O}$ (5:1)], 4d [hexane-EtOAc (10:1)], 4e [hexane- $\mathrm{Et}_{2} \mathrm{O}$ (7:1)], 4f [hexane- $\left.\mathrm{Et}_{2} \mathrm{O}(4: 1)\right]$. Physical data for compounds 4a-f are summarized in Table 1.

General Procedures for Acylation Reaction: by using a Catalytic Amount of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$.-Benzyl 2-phenylethyl succinate 6a. To a solution of compound $4 \mathrm{a}(244 \mathrm{mg}, 0.980$ mmol) and phenethyl alcohol $5 \mathrm{a}(100 \mathrm{mg}, 0.820 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added a drop of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(d 1.84 \mathrm{~g}$ cm^{-3}) and the mixture was stirred for 30 min at room temperature. After the mixture had been concentrated under reduced pressure, $\mathrm{MeCN}\left(0.2 \mathrm{~cm}^{3}\right)$ and a drop of conc. HCl were added to the residue at $0^{\circ} \mathrm{C}$. The mixture was stirred for 20 min and partitioned between EtOAc and saturated aq. NaHCO_{3}. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a residue, which was purified by column chromatography on silica gel [hexane- $\mathrm{Et}_{2} \mathrm{O}(3: 1)$] to give the title diester $6 \mathrm{a}(194 \mathrm{mg}, 76 \%)$ as an oil. Physical data for compounds 6 are given in Table 3.

By using a Catalytic Amount of p-TsOH.-2-Phenylethyl 2(trimethylsilyl) ethyl succinate $\mathbf{6 b}$. To a solution of compound $\mathbf{4 b}$ ($550 \mathrm{mg}, 2.13 \mathrm{mmol}$) and the alcohol $5 \mathrm{a}(130 \mathrm{mg}, 1.07 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(8 \mathrm{~cm}^{3}\right)$ was added anhydrous $p-\mathrm{TsOH}(37.0 \mathrm{mg}$, 0.210 mmol) and the mixture was stirred at $40^{\circ} \mathrm{C}$ for 12 h . After the mixture had been concentrated under reduced pressure, $\mathrm{MeCN}\left(0.1 \mathrm{~cm}^{3}\right)$ and three drops of conc. HCl were added to the residue at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 min and then partitioned between EtOAc and saturated aq. NaHCO_{3}. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a residue, which was purified by column chromatography on silica gel [hexane- $\left.\mathrm{Et}_{2} \mathrm{O}(8: 1)\right]$ to give the title diester $\mathbf{6 b}$ (256 $\mathrm{mg}, 75 \%$) as an oil.
Reaction conditions of the synthesis of compounds 6a-y are shown in Table 2. Products $\mathbf{6 c}-\mathbf{y}$ were purified by column chromatography on silica gel $\left\{\mathbf{6 c}, \mathbf{g}(\equiv \mathbf{2 a}), \mathbf{i}, \mathbf{l}\left[\right.\right.$ hexane $-\mathrm{Et}_{2} \mathrm{O}$ (5:1)], $\mathbf{6 d}$ [hexane- $\left.\mathrm{Et}_{2} \mathrm{O}(7: 1)\right], \mathbf{6 e}, \mathbf{t}$ [hexane- $\mathrm{Et}_{2} \mathrm{O}$ (10:1)], $\mathbf{6 f}$, \mathbf{w} [hexane- $\mathrm{Et}_{2} \mathrm{O}(2: 1)$], $\mathbf{6 h}$, \mathbf{k} [hexane- $\mathrm{Et}_{2} \mathrm{O}$ (3:1)], $\mathbf{6 j}$, \mathbf{s} [hexane- $\left.\mathrm{Et}_{2} \mathrm{O}(9: 1)\right], 6 \mathrm{~m}$ [hexane- $\left.\mathrm{EtOAc}(20: 1)\right], 6 \mathrm{n}$ [hexane$\mathrm{Et}_{2} \mathrm{O}$ (11:1)], 60 [hexane-EtOAc (2:1)], $6 \mathbf{p}$ [hexane-EtOAc (8:1)], $6 \mathbf{q}$ [hexane-EtOAc (15:1)], 6r [hexane- $\mathrm{Et}_{2} \mathrm{O}$ (4:1)], $\mathbf{6 u}$ [hexane- $\mathrm{Et}_{2} \mathrm{O}$ (3:2)], 6v [hexane- $\mathrm{Et}_{2} \mathrm{O}$ (2:3)], 6x [hexane-benzene- $\left.\mathrm{Et}_{2} \mathrm{O}(8: 6: 1)\right], 6 y\left[\right.$ hexane- $\left.\left.\mathrm{CHCl}_{3}(1: 2)\right]\right\}$.

General Procedures for Synthesis of Alcohol O-Hemiesters: By Catalytic Hydrogenation (Method A).-2-Phenylethyl hydrogen succinate 7a. Pd-black (30 mg) was added to a solution of diester $\mathbf{6 a}$ ($250 \mathrm{mg}, 0.800 \mathrm{mmol}$) in 1,4 -dioxane ($2 \mathrm{~cm}^{3}$), and the mixture was subjected to catalytic hydrogenation under hydrogen for 4 h . The catalyst was filtered off and the filtrate was concentrated under reduced pressure. To the crude product was added a mixture of saturated aq. NaHCO_{3} and EtOAc. The aqueous layer was separated, acidified with $10 \% \mathrm{aq} . \mathrm{HCl}$, and extracted with EtOAc. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure to give the title O hemiester 7a ($156 \mathrm{mg}, 88 \%$) as an oil. Physical data for compounds 7 are summarized in Table 4.

By using TBAF (Method B).-2-Phenylethyl hydrogen pimelate 7 b . To a solution of compound $\mathbf{6 e}(300 \mathrm{mg}, 0.820$ mmol) in dimethylformamide (DMF) ($4 \mathrm{~cm}^{3}$) was added TBAF. $3 \mathrm{H}_{2} \mathrm{O}(517 \mathrm{mg}, 1.64 \mathrm{mmol})$ and the mixture was stirred at room temperature for 1.5 h . A mixture of saturated aq. NaHCO_{3} and EtOAc was added to the reaction mixture. The aqueous layer was separated, acidified with 10% aq. HCl , and extracted with EtOAc. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure to give the title O hemiester 7 b ($185 \mathrm{mg}, 85 \%$) as an oil.

By Alkaline Hydrolysis (Method C).-1,1-Dimethyl-2-phenylethyl hydrogen succinate 7f. To a solution of compound $\mathbf{6 0}$ (150 $\mathrm{mg}, 0.570 \mathrm{mmol})$ in $\mathrm{MeOH}\left(6 \mathrm{~cm}^{3}\right)$ at $5^{\circ} \mathrm{C}$ was added 0.38 mol $\mathrm{dm}^{-3} \mathrm{NaOH}\left(3.00 \mathrm{~cm}^{3}, 1.14 \mathrm{mmol}\right)$ and the mixture was stirred at room temperature for 2.5 h . After the reaction mixture had been washed with EtOAc, the aqueous layer was acidified with $10 \% \mathrm{aq} . \mathrm{HCl}$ and extracted with EtOAc. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure to give the title O-hemiester 7 f ($120 \mathrm{mg}, 85 \%$) as an oil.
Reaction conditions for the synthesis of half-esters $\mathbf{7 a - m}$ are shown in Table 2.

10-O-[3-(Methoxycarbonyl)propionyl]-7,9-O-phenylborane-diyl- β-rhodomycinone 9 a .-Under nitrogen, a drop of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}\left(d 1.84 \mathrm{~g} \mathrm{~cm}^{-3}\right)$ was added to a stirred solution of compound $8^{14}(33.0 \mathrm{mg}, 0.064 \mathrm{mmol})$ and diester $4 \mathrm{c}(44.0 \mathrm{mg}$, $0.250 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(7 \mathrm{~cm}^{3}\right)$ at room temperature. After being stirred at room temperature for 2 h , the reaction mixture was quenched with saturated aq. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. The residue was washed with hexane and purified by PLC $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}(9: 1)\right]$ to give the title compound 9 a ($32.0 \mathrm{mg}, 86 \%$) as red crystals, m.p. $209-211^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$); $[\alpha]_{\mathrm{D}}^{25}+314$ (c $0.10, \mathrm{CHCl}_{3}$); $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1735$ and $1600 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.11$ $\left(3 \mathrm{H}, \mathrm{t}, J 7.3,14-\mathrm{H}_{3}\right), 1.69$ and $2.03(1 \mathrm{H}$ each, 2 sextet, $J 7.3$, $13-\mathrm{H}_{2}$), $2.20(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $2.4,8-\mathrm{H}$), $2.35(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $1.2,8-\mathrm{H}), 2.55-2.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.69(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 5.75(1 \mathrm{H}, \mathrm{br} t, J 2.5,7-\mathrm{H}), 6.36(1 \mathrm{H}, \mathrm{d}, J 1.2,10-\mathrm{H})$, $7.20-7.45(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and ArH$), 7.70(1 \mathrm{H}, \mathrm{t}, J 8.0,2-\mathrm{H}), 7.77$ ($2 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{ArH}$), $7.86(1 \mathrm{H}, \mathrm{d}, J 8.0,1-\mathrm{H}), 12.12$ ($1 \mathrm{H}, \mathrm{s}, 4-\mathrm{OH}$), $12.80(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{OH})$ and 13.38 ($1 \mathrm{H}, \mathrm{s}, 11-\mathrm{OH}$) (Found: C, 63.3; $\mathrm{H}, 4.6 . \mathrm{C}_{31} \mathrm{H}_{27} \mathrm{BO}_{11}$ requires $\mathrm{C}, 63.50 ; \mathrm{H}, 4.64 \%$).

10-O-[6-(Methoxycarbonyl)hexanoyl]-7,9-O-phenylborane-diyl- β-rhodomycinone 9 b .-Compound $9 \mathrm{~b}(23.0 \mathrm{mg}, 87 \%)$ was prepared from compound $8(20.0 \mathrm{mg}, 0.0420 \mathrm{mmol})$, diester 4 f $(40.0 \mathrm{mg}, 0.187 \mathrm{mmol})$ and a drop of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, as red crystals, m.p. $70-74^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $[\alpha]_{\mathrm{D}}^{25}+360$ (c $\left.0.11, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730$ and $1600 ; \delta_{\mathrm{H}}(500$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $1.11\left(3 \mathrm{H}, \mathrm{t}, J 7.3,14-\mathrm{H}_{3}\right), 1.32-1.45(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 1.55-1.75\left(5 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}\right.$ and $\left.\mathrm{CH}_{2} \times 2\right), 2.05(1 \mathrm{H}$, sextet, $J 7.3,13-\mathrm{H}), 2.20(1 \mathrm{H}, \mathrm{dd}, J 14.0$ and $1.8,8-\mathrm{H}), 2.25-2.40(5 \mathrm{H}$,
$\mathrm{m}, 8-\mathrm{H}$ and $\left.\mathrm{CH}_{2} \times 2\right), 3.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 5.74\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, w_{\frac{1}{2}}\right.$ $6.0,7-\mathrm{H}), 6.36(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 7.25-7.43(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and ArH$)$, 7.68 (1 H, t, $J 8.0,2-\mathrm{H}), 7.78$ ($2 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{ArH}$), $7.84(1 \mathrm{H}, \mathrm{d}, J$ $8.0,1-\mathrm{H}), 12.10(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{OH}), 12.78(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{OH})$ and 13.38 ($1 \mathrm{H}, \mathrm{s}, 11-\mathrm{OH}$) (Found: $\mathrm{C}, 64.8 ; \mathrm{H}, 5.2 . \mathrm{C}_{34} \mathrm{H}_{33} \mathrm{BO}_{11}$ requires C, 64.98; H, 5.29%).

10-O-[3-(Benzyloxycarbonyl)propionyl]-7,9-O-phenylbor-anediyl- β-rhodomycinone 9c.-Compound 9c ($28.0 \mathrm{mg}, 80 \%$) was prepared from compound $8(25.0 \mathrm{mg}, 0.0530 \mathrm{mmol})$, diester $4 \mathrm{a}(65.0 \mathrm{mg}, 0.260 \mathrm{mmol})$ and a drop of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, as red crystals, m.p. $86-89^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $[\alpha]_{\mathrm{D}}^{25}+181$ (c $\left.0.097, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1735$ and $1600 ; \delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.09\left(3 \mathrm{H}, \mathrm{t}, J 7.3,14-\mathrm{H}_{3}\right), 1.68$ and $2.03(1 \mathrm{H}$ each, 2 sextet, $\left.J 7.3,13-\mathrm{H}_{2}\right), 2.17(1 \mathrm{H}$, dd, $J 14.0$ and $2.0,8-\mathrm{H})$, $2.32(1 \mathrm{H}, \mathrm{d}, J 14.0,8-\mathrm{H}), 2.63-2.85\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 5.12$ (2 H , br s, benzyl CH ${ }_{2}$), $5.72\left(1 \mathrm{H}, \mathrm{s}, w_{\frac{3}{2}} 7.5,7-\mathrm{H}\right), 6.35(1 \mathrm{H}, \mathrm{s}$, $10-\mathrm{H}), 7.25-7.40(9 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and ArH), $7.67(1 \mathrm{H}, \mathrm{t}, J 8.0,2-\mathrm{H})$, $7.77(2 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{ArH}), 7.81(1 \mathrm{H}, \mathrm{d}, J 8.0,1-\mathrm{H}), 12.08(1 \mathrm{H}, \mathrm{s}$, $4-\mathrm{OH}), 12.76(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{OH})$ and $13.35(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{OH})$ (Found: $\mathrm{C}, 67.25 ; \mathrm{H}, 4.7 . \mathrm{C}_{37} \mathrm{H}_{31} \mathrm{BO}_{11}$ requires $\mathrm{C}, 67.08 ; \mathrm{H}, 4.72 \%$).

10-O-[3-(Methoxycarbonyl)propionyl]-ß-rhodomycinone
10a.-A mixture of boronate 9a $(28.0 \mathrm{mg}, 0.0480 \mathrm{mmol})$, 2-methylpentane-2,4-diol $\left(0.12 \mathrm{~cm}^{3}\right), \mathrm{AcOH}\left(0.06 \mathrm{~cm}^{3}\right)$, acetone ($1.8 \mathrm{~cm}^{3}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2.4 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 24 h . The reaction mixture was poured into a mixture of EtOAc and saturated aq. NaHCO_{3}. The organic layer was separated, washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. The residue was washed with hexane and recrystallized from CHCl_{3}-hexane to give the title compound $10 \mathrm{a}(22.0 \mathrm{mg}, 92 \%$) as red crystals, m.p. 241$243{ }^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $[\alpha]_{\mathrm{D}}^{25}-75.5$ (c 0.10, CHCl_{3}); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730$ and $1600 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.08\left(3 \mathrm{H}, \mathrm{t}, J 7.3,14-\mathrm{H}_{3}\right), 1.57$ and $1.75(1 \mathrm{H}$ each, 2 sextet, J $7.3,13-\mathrm{H}_{2}$), $2.02(1 \mathrm{H}, \mathrm{dd}, J 14.6$ and $5.2,8-\mathrm{H}), 2.36(1 \mathrm{H}, \mathrm{d}, J$ 14.6, 8-H), 2.50-2.75 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.39(1 \mathrm{H}, \mathrm{brs}, 9-\mathrm{OH})$, $3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 5.27\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, w_{\frac{1}{2}} 10.5,7-\mathrm{H}\right), 6.29(1 \mathrm{H}, \mathrm{s}$, $10-\mathrm{H}), 7.28(1 \mathrm{H}, \mathrm{d}, J 8.0,3-\mathrm{H}), 7.69(1 \mathrm{H}, \mathrm{t}, J 8.0,2-\mathrm{H}), 7.81(1 \mathrm{H}$, $\mathrm{d}, J 8.0,1-\mathrm{H}), 12.04(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{OH}), 12.86(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{OH})$ and 13.32 ($1 \mathrm{H}, \mathrm{s}, 11-\mathrm{OH}$) (Found: C, 59.65 ; $\mathrm{H}, 4.85 . \mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{11}$ requires $\mathrm{C}, 60.00 ; \mathrm{H}, 4.83 \%$).

10-O-[6-(Methoxycarbonyl)hexanoyl]- β-rhodomycinone

10b.-Compound $10 \mathrm{~b}(36.0 \mathrm{mg}, 83 \%)$ was prepared from compound 9b ($50.0 \mathrm{mg}, 0.0800 \mathrm{mmol}$), 2-methylpentane-2,4diol ($0.2 \mathrm{~cm}^{3}$), $\mathrm{AcOH}\left(0.1 \mathrm{~cm}^{3}\right.$), acetone ($3.1 \mathrm{~cm}^{3}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($4.1 \mathrm{~cm}^{3}$), as red crystals, m.p. $210-213{ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-$ hexane $) ;[\alpha]_{\mathrm{D}}^{25}+124\left(c 0.043, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720$ and $1600 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.09\left(3 \mathrm{H}, \mathrm{t}, J 7.3,14-\mathrm{H}_{3}\right), 1.28-$ $1.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.50-1.70\left(5 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}\right.$ and $\left.\mathrm{CH}_{2} \times 2\right)$, $1.74(1 \mathrm{H}$, sextet, $J 7.3,13-\mathrm{H}), 2.00(1 \mathrm{H}$, dd, $J 14.7$ and $4.9,8-$ H), 2.20-2.32 (4 H, m, $\mathrm{CH}_{2} \times 2$), $2.35(1 \mathrm{H}, \mathrm{d}, J 14.7,8-\mathrm{H}), 3.39$ $(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{OH}), 3.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.66(1 \mathrm{H}, \mathrm{d}, J 5.5,7-\mathrm{OH})$, $5.27(1 \mathrm{H}, \mathrm{t}, J 4.5,7-\mathrm{H}), 6.29(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 7.28(1 \mathrm{H}, \mathrm{d}, J 8.0,3-$ H), $7.69(1 \mathrm{H}, \mathrm{t}, J 8.0,2-\mathrm{H}), 7.82(1 \mathrm{H}, \mathrm{d}, J 8.0,1-\mathrm{H}), 12.05(1 \mathrm{H}$, $\mathrm{s}, 4-\mathrm{OH}), 12.87(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{OH})$ and $13.34(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{OH})$ (Found: C, $61.65 ; \mathrm{H}, 5.5 . \mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{11}$ requires $\mathrm{C}, 61.98 ; \mathrm{H}$, 5.57%).

10-O-[3-(Benzyloxycarbonyl)propionyl]- β-rhodomycinone

10c.-Compound $10 \mathrm{c}(20.0 \mathrm{mg}, 85 \%$) was prepared from boronate 9c ($27.0 \mathrm{mg}, 0.0410 \mathrm{mmol}$), 2-methylpentane-2,4-diol ($0.1 \mathrm{~cm}^{3}$), $\mathrm{AcOH}\left(0.05 \mathrm{~cm}^{3}\right.$), acetone ($1.6 \mathrm{~cm}^{3}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \mathrm{~cm}^{3}$), as red crystals, m.p. $213-215^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $[\alpha]_{\mathrm{D}}^{25}+27.8\left(c \quad 0.036, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730$ and $1600 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.06\left(3 \mathrm{H}, \mathrm{t}, J 7.3,14-\mathrm{H}_{3}\right), 1.55$ and 1.74 (1 H each, 2 sextet, $J 7.3,13-\mathrm{H}_{2}$), $2.00(1 \mathrm{H}, \mathrm{dd}, J 14.7$ and
4.9, 8-H), 2.33 ($1 \mathrm{H}, \mathrm{d}, J \mathrm{l} 4.7,8-\mathrm{H}), 2.55-2.78$ ($4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.37(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{OH}), 3.63(1 \mathrm{H}, \mathrm{d}, J 5.5,7-\mathrm{OH}), 5.09$ ($2 \mathrm{H}, \mathrm{d}, J 1.8$, benzyl CH2 $), 5.25(1 \mathrm{H}, \mathrm{t}, J 4.5,7-\mathrm{H}), 6.28(1 \mathrm{H}, \mathrm{d}$, $J 1.2,10-\mathrm{H}), 7.24-7.45(6 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and ArH$), 7.69(1 \mathrm{H}, \mathrm{t}, J$ $8.0,2-\mathrm{H}), 7.82(1 \mathrm{H}, \mathrm{d}, J 8.0,1-\mathrm{H}), 12.03(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{OH}), 12.84(1$ $\mathrm{H}, \mathrm{s}, 6-\mathrm{OH}$) and $13.31(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{OH})$ (Found: C, 64.35; H, 4.8. $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{O}_{11}$ requires $\mathrm{C}, 64.58 ; \mathrm{H}, 4.89 \%$).

10-O-[3-(Methoxycarbonyl)propionyl]-4'-O-(p-nitrobenzo-yl)-3'-N-(trifluoroacetyl)oxaunomycin 12a.-Under nitrogen, TMSOTf $\left(0.023 \mathrm{~cm}^{3}, 0.13 \mathrm{mmol}\right)$ was added to a stirred mixture of compound $11(35.0 \mathrm{mg}, 0.063 \mathrm{mmol})$ and MS $4 \AA$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(7 \mathrm{~cm}^{3}\right)$-dry $\mathrm{Et}_{2} \mathrm{O}\left(2.6 \mathrm{~cm}^{3}\right)$ at $-40^{\circ} \mathrm{C}$. The mixture was stirred at $-5^{\circ} \mathrm{C}$ for 1 h and was then cooled to $-15^{\circ} \mathrm{C}$, and a solution of compound $10 \mathrm{a}(25.0 \mathrm{mg}, 0.050 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(7 \mathrm{~cm}^{3}\right)$ was added. After being stirred for 6 h under the same conditions, the mixture was poured into a vigorously stirred mixture of EtOAc and saturated aq. NaHCO_{3}. The organic layer was separated, and the aqueous layer was extracted with EtOAc. The combined organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Purification of the residue by $\mathrm{PLC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}\right.$ ($9: 1$)] gave the title compound $12 \mathrm{a}(34.5 \mathrm{mg}, 79 \%$) as red crystals, m.p. $158-160^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $[\alpha]_{\mathrm{D}}^{25}-79.4$ (c 0.10, $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} \quad 1735,1600$ and $1530 ; \delta_{\mathrm{H}}(500$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $1.08\left(3 \mathrm{H}, \mathrm{t}, J 7.3,14-\mathrm{H}_{3}\right), 1.27(3 \mathrm{H}, \mathrm{d}, J 6.1$, $\left.6^{\prime}-\mathrm{H}_{3}\right), 1.54$ and $1.70\left(1 \mathrm{H}\right.$ each, 2 sextet, $\left.J 7.3,13-\mathrm{H}_{2}\right), 2.02-2.20$ ($3 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$ and $2^{\prime}-\mathrm{H}_{2}$), $2.41(1 \mathrm{H}, \mathrm{d}, J 15.3,8-\mathrm{H}), 2.50-2.75$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.49(1 \mathrm{H}, \mathrm{br}, 9-\mathrm{OH}), 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, $4.46\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.49\left(1 \mathrm{H}, \mathrm{q}, J 6.1,5^{\prime}-\mathrm{H}\right), 5.24(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ $2.4,7-\mathrm{H}), 5.48\left(1 \mathrm{H}\right.$, br s, $\left.4^{\prime}-\mathrm{H}\right), 5.65\left(1 \mathrm{H}\right.$, br d, J 3.7, $\left.1^{\prime}-\mathrm{H}\right)$, $6.26\left(1 \mathrm{H}\right.$, br d, $\left.J 7.3,3^{\prime}-\mathrm{NH}\right), 6.32(1 \mathrm{H}, \mathrm{d}, J 1.2,10-\mathrm{H}), 7.34$ ($1 \mathrm{H}, \mathrm{d}, J 8.0,3-\mathrm{H}), 7.74(1 \mathrm{H}, \mathrm{t}, J 8.0,2-\mathrm{H}), 7.91(1 \mathrm{H}, \mathrm{d}, J$ $8.0,1-\mathrm{H}), 8.29$ and 8.35 (2 H each, $2 \mathrm{~d}, J 8.8, \mathrm{ArH}$), 12.09 (1 $\mathrm{H}, \mathrm{s}, 4-\mathrm{OH}), 12.90(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{OH})$ and $13.43(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{OH})$ [Found: M^{-}(FAB, negative), 874.2011. $\mathrm{C}_{40} \mathrm{H}_{37} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{17}$ requires $\mathrm{M}, 874.2045$].

10-O-[6-(Methoxycarbonyl)hexanoyl]-4'-O-(p-nitrobenzo-

 $y l$)-3'-N-(trifluoroacetyl)oxaunomycin 12b.-Compound 12b ($39.0 \mathrm{mg}, 77 \%$) was prepared from compound 11 (38.0 mg , $0.0700 \mathrm{mmol}), \operatorname{TMSOTf}\left(0.026 \mathrm{~cm}^{3}, 0.14 \mathrm{mmol}\right)$, and compound $10 \mathrm{~b}(30.0 \mathrm{mg}, 0.0560 \mathrm{mmol})$ in the presence of MS $4 \AA(220 \mathrm{mg})$, as red crystals, m.p. $144-147^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $[\alpha]_{\mathrm{D}}^{25}$ $-33.0\left(c 0.10, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730,1600$ and $1530 ; \delta_{\mathbf{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.08\left(3 \mathrm{H}, \mathrm{t}, J 7.3,14-\mathrm{H}_{3}\right), 1.27$ ($3 \mathrm{H}, \mathrm{d}, J 6.7,6^{\prime}-\mathrm{H}_{3}$), 1.25-1.40(2 H, m, CH $\left.{ }_{2}\right), 1.49(1 \mathrm{H}$, sextet, $J 7.3,13-\mathrm{H}), 1.55-1.70\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2\right), 1.70(1 \mathrm{H}$, sextet, J $7.3,13-\mathrm{H}), 2.05-2.20\left(3 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}\right.$ and $\left.2^{\prime}-\mathrm{H}_{2}\right), 2.27(4 \mathrm{H}, \mathrm{t}, J 7.3$, $\left.\mathrm{CH}_{2} \times 2\right), 2.41(1 \mathrm{H}, \mathrm{d}, J 15.3,8-\mathrm{H}), 3.48(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{OH}), 3.62$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.43-4.53\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 5.24(1 \mathrm{H}$, br d, $J 2.4,7-\mathrm{H}), 5.48\left(1 \mathrm{H}\right.$, br s, $\left.4^{\prime}-\mathrm{H}\right), 5.65(1 \mathrm{H}$, br d, $J 3.7$, $\left.1^{\prime}-\mathrm{H}\right), 6.29\left(1 \mathrm{H}\right.$, br d, $\left.J 7.3,3^{\prime}-\mathrm{NH}\right), 6.30(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 7.33$ $(1 \mathrm{H}, \mathrm{d}, J 8.0,3-\mathrm{H}), 7.73(1 \mathrm{H}, \mathrm{t}, J 8.0,2-\mathrm{H}), 7.90(1 \mathrm{H}, \mathrm{d}, J$ $8.0,1-\mathrm{H}), 8.29$ and 8.35 (2 H each, $2 \mathrm{~d}, J 8.8$, ArH), 12.08 (1 $\mathrm{H}, \mathrm{s}, 4-\mathrm{OH}), 12.89(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{OH})$ and $13.43(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{OH})$ [Found: M^{-}(FAB, negative), 916.2502. $\mathrm{C}_{43} \mathrm{H}_{43} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{17}$ requires $\mathrm{M}, 916.2514]$.10-O-[3-(Methoxycarbonyl)propionyl]-3'-N-(trifluoroacet$y l)$ oxaunomycin 13a.-A solution of nitrobenzoate 12a (23.0 $\mathrm{mg}, 0.0260 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.4 \mathrm{~cm}^{3}\right)-\mathrm{MeOH}\left(1.4 \mathrm{~cm}^{3}\right)$ was treated with $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}\left(0.310 \mathrm{~cm}^{3}, 0.0310 \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 min under the same conditions, then a drop of 10% aq. HCl was added. The resulting mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The separated organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Purification of the residue by PLC
$\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}(3: 1)\right]$ gave the title compound $13 \mathrm{a}(17.0 \mathrm{mg}$, 90%) as red crystals, m.p. $142-145^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $[\alpha]_{\mathrm{D}}^{25}+209\left(c \quad 0.096, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730$ and $1600 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.05\left(3 \mathrm{H}, \mathrm{t}, J 7.3,14-\mathrm{H}_{3}\right), 1.32$ ($3 \mathrm{H}, \mathrm{d}, J 6.7,6^{\prime}-\mathrm{H}_{3}$), 1.51 and 1.79 (1 H each, 2 sextet, $J 7.3$, $\left.13-\mathrm{H}_{2}\right), 1.83\left(1 \mathrm{H}, \mathrm{dt}, J 13.0\right.$ and $\left.3.7,2^{\prime}-\mathrm{H}\right), 1.98(1 \mathrm{H}$, br d,$J 9.0$, $\left.4^{\prime}-\mathrm{OH}\right), 2.00-2.10\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{and} 2^{\prime}-\mathrm{H}\right), 2.38(1 \mathrm{H}, \mathrm{d}, J 15.3$, $8-\mathrm{H}), 2.50-2.75\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.61(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{OH}), 3.65-$ $3.75\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.15-4.25(1 \mathrm{H}, \mathrm{m}$, $\left.3^{\prime}-\mathrm{H}\right), 4.30\left(1 \mathrm{H}, \mathrm{q}, J 6.7,5^{\prime}-\mathrm{H}\right), 5.17(1 \mathrm{H}$, br d, $J 2.4,7-\mathrm{H}), 5.46$ (1 H , br d, $\left.J 3.7,1^{\prime}-\mathrm{H}\right), 6.30(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 6.65(1 \mathrm{H}, \mathrm{d}, J 8.6$, $\left.3^{\prime}-\mathrm{NH}\right), 7.33(1 \mathrm{H}, \mathrm{d}, J 8.0,3-\mathrm{H}), 7.72$ ($\left.1 \mathrm{H}, \mathrm{t}, J 8.0,2-\mathrm{H}\right), 7.90$ ($1 \mathrm{H}, \mathrm{d}, J 8.0,1-\mathrm{H}), 12.08(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{OH}), 12.84(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{OH})$ and $13.42(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{OH})$ [Found: M^{-}(FAB, negative), 725.1956. $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~F}_{3} \mathrm{NO}_{14}$ requires $\left.\mathrm{M}, 725.1931\right]$.

10-O-[6-(Methoxycarbonyl)hexanoyl]-3'-N-(trifluoroacetyl)oxaunomycin 13b.-Compound 13b ($19.0 \mathrm{mg}, 97 \%$) was prepared from nitrobenzoate $12 \mathrm{~b}(23.5 \mathrm{mg}, 0.0260 \mathrm{mmol})$ and $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}\left(0.310 \mathrm{~cm}^{3}, 0.0310 \mathrm{mmol}\right)$, as red crystals, m.p. $108-111^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $[\alpha]_{\mathrm{D}}^{25}+255(c 0.081$, $\left.\mathrm{CHCl}_{3}\right) ; \quad v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1725$ and $1600 ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.05\left(3 \mathrm{H}, \mathrm{t}, J 7.3,14-\mathrm{H}_{3}\right), 1.25-1.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.32$ ($3 \mathrm{H}, \mathrm{d}, J 6.7,6^{\prime}-\mathrm{H}_{3}$), $1.45(1 \mathrm{H}$, sextet, $J 7.3,13-\mathrm{H}), 1.55-1.70$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2\right), 1.78(1 \mathrm{H}$, sextet, $J 7.3,13-\mathrm{H}), 1.83(1 \mathrm{H}, \mathrm{dt}$, $J 13.0$ and $\left.3.7,2^{\prime}-\mathrm{H}\right), 1.98\left(1 \mathrm{H}, \mathrm{d}, J 7.9,4^{\prime}-\mathrm{OH}\right), 2.00-2.10(2 \mathrm{H}$, $\mathrm{m}, 8-$ and $\left.2^{\prime}-\mathrm{H}\right), 2.27\left(4 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \times 2\right), 2.38(1 \mathrm{H}, \mathrm{d}, J 14.7$, $8-\mathrm{H}), 3.59(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{OH}), 3.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.65-3.70(1 \mathrm{H}$, $\left.\mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.15-4.25\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.31\left(1 \mathrm{H}, \mathrm{q}, J 6.7,5^{\prime}-\mathrm{H}\right), 5.17$ (1 H , br d, $J 2.4,7-\mathrm{H}), 5.46\left(1 \mathrm{H}\right.$, br d, $\left.J 3.7,1^{\prime}-\mathrm{H}\right), 6.29(1 \mathrm{H}, \mathrm{d}, J$ $1.2,10-\mathrm{H}), 6.64\left(1 \mathrm{H}, \mathrm{d}, J 8.6,3^{\prime}-\mathrm{NH}\right), 7.32(1 \mathrm{H}, \mathrm{d}, J 8.0,3-\mathrm{H})$, $7.72(1 \mathrm{H}, \mathrm{t}, J 8.0,2-\mathrm{H}), 7.90(1 \mathrm{H}, \mathrm{d}, J 8.0,1-\mathrm{H}), 12.09(1 \mathrm{H}, \mathrm{s}$, $4-\mathrm{OH}), 12.85(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{OH})$ and $13.44(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{OH})$ [Found: M^{-}(FAB, negative), 767.2374. $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~F}_{3} \mathrm{NO}_{14}$ requires M , 767.2401].

10-O-(3-Carboxypropionyl)-3'-N-(trifluoroacetyl)oxaunomysin 14a.-A solution of ester $13 \mathrm{a}(10.0 \mathrm{mg}, 0.0140 \mathrm{mmol})$ in DME ($2 \mathrm{~cm}^{3}$) was treated with a mixture of $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}$ $\left(2.80 \mathrm{~cm}^{3}, 0.280 \mathrm{mmol}\right)$ and $\operatorname{DME}\left(1 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 30 min , then a drop of 5% aq. AcOH was added. The resulting mixture was partitioned between EtOAc and water. The separated organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Purification of the residue by $\mathrm{PLC}\left[\mathrm{CHCl}_{3}-\mathrm{MeOH}\right.$ (95:5)] gave hemiester $14 \mathrm{a}(5.0 \mathrm{mg}, 51 \%$) as red crystals, m.p. $169-$ $172{ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{MeOH}-$ hexane $) ; ~[\alpha]_{\mathrm{D}}^{25}+305$ (c 0.011, acetone); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} \quad 1720$ and $1600 ; \delta_{\mathrm{H}}[500 \mathrm{MHz}$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 0.95\left(3 \mathrm{H}, \mathrm{t}, J 7.3,14-\mathrm{H}_{3}\right), 1.13\left(3 \mathrm{H}, \mathrm{d}, J 6.7,6^{\prime}-\right.$ H_{3}), 1.40-1.52 ($\left.2 \mathrm{H}, \mathrm{m}, 13-\mathrm{and} 2^{\prime}-\mathrm{H}\right), 1.56(1 \mathrm{H}$, sextet, $J 7.3$, $13-\mathrm{H}), 1.89(1 \mathrm{H}$, dd, $J 14.7$ and $4.9,8-\mathrm{H}), 2.09(1 \mathrm{H}, \mathrm{dt}, J$ 13.0 and $\left.3.7,2^{\prime}-\mathrm{H}\right), 2.26(1 \mathrm{H}, \mathrm{d}, J 14.7,8-\mathrm{H}), 2.48-2.55(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.51\left(1 \mathrm{H}\right.$, br d$\left., J 9.4,4^{\prime}-\mathrm{H}\right), 3.95-4.02(1 \mathrm{H}, \mathrm{m}$, $\left.3^{\prime}-\mathrm{H}\right), 4.21\left(1 \mathrm{H}, \mathrm{q}, J 6.7,5^{\prime}-\mathrm{H}\right), 4.39$ ($1 \mathrm{H}, \mathrm{s}, 9-\mathrm{OH}$), 4.97 (1 H, br d, $J 4.9,7-\mathrm{H}), 5.00\left(1 \mathrm{H}, \mathrm{d}, J 2.4,4^{\prime}-\mathrm{OH}\right), 5.27(1 \mathrm{H}$, br d, J 3.1, 1'-H), $6.10(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 7.42(1 \mathrm{H}, \mathrm{d}, J 7.9,3-\mathrm{H})$, $7.80-7.90(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{and} 2-\mathrm{H}), 9.06\left(1 \mathrm{H}, \mathrm{d}, J 7.3,3^{\prime}-\mathrm{NH}\right)$, $11.96(1 \mathrm{H}$, br s, $4-\mathrm{OH}), 12.10-12.24\left(1 \mathrm{H}, \mathrm{br}, \mathrm{CO}_{2} \mathrm{H}\right), 12.77$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{OH})$ and $13.36(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{OH})$ [Found: M^{-} (FAB, negative), 711.1815. $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{NO}_{14}$ requires M , $711.1776]$.

10-O-(6-Carboxyhexanoyl)-3'-N-(trifluoroacetyl)oxaunomycin 14 b .-Compound $14 \mathrm{~b}(2.0 \mathrm{mg}, 41 \%)$ was prepared from ester 13b ($5.0 \mathrm{mg}, 0.0065 \mathrm{mmol}$) and $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}\left(1.30 \mathrm{~cm}^{3}\right.$, 0.130 mmol), as red crystals, m.p. $147-149^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-$ hexane); $[\alpha]_{\mathrm{D}}^{25}+250\left(c \quad 0.010, \mathrm{CHCl}_{3}\right.$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1720 and $1605 ; \delta_{\mathrm{H}}\left[500 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 0.96(3 \mathrm{H}, \mathrm{t}, J 7.3$,
$\left.14-\mathrm{H}_{3}\right), 1.12\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7,6^{\prime}-\mathrm{H}_{3}\right), 1.20-1.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.38-$ $1.54\left(6 \mathrm{H}, \mathrm{m}, 13-, 2^{\prime}-\mathrm{H}\right.$ and $\left.\mathrm{CH}_{2} \times 2\right), 1.58(1 \mathrm{H}$, sextet, J7.3, 13$\mathrm{H}), 1.87(1 \mathrm{H}, \mathrm{dd}, J 14.8$ and $4.6,8-\mathrm{H}), 2.08(1 \mathrm{H}, \mathrm{dt}, J 13.0$ and 3.7, $\left.2^{\prime}-\mathrm{H}\right), 2.13\left(2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2}\right), 2.19-2.21(3 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$ and CH_{2}), $3.51\left(1 \mathrm{H}\right.$, br d, $\left.J 3.7,4^{\prime}-\mathrm{H}\right), 3.95-4.02\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.22$ $\left(1 \mathrm{H}, \mathrm{q}, J 6.7,5^{\prime}-\mathrm{H}\right), 4.41(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{OH}), 4.97(1 \mathrm{H}, \mathrm{d}, J 3.7,7-\mathrm{H})$, $5.00\left(1 \mathrm{H}, \mathrm{d}, J 5.5,4^{\prime}-\mathrm{OH}\right), 5.27\left(1 \mathrm{H}\right.$, br d, $\left.J 3.1,1^{\prime}-\mathrm{H}\right), 6.11(1 \mathrm{H}$, $\mathrm{s}, 10-\mathrm{H}), 7.42(1 \mathrm{H}, \mathrm{d}, J 7.9,3-\mathrm{H}), 7.80-7.90(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{and} 2-\mathrm{H})$, $9.05\left(1 \mathrm{H}, \mathrm{d}, J 7.3,3^{\prime}-\mathrm{NH}\right), 11.83-11.95\left(1 \mathrm{H}, \mathrm{br}, \mathrm{CO}_{2} \mathrm{H}\right), 11.96$ ($1 \mathrm{H}, \mathrm{s}, 4-\mathrm{OH}), 12.77(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{OH})$ and $13.39(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{OH})$ [Found: M^{-}(FAB, negative), 753.2274. $\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~F}_{3} \mathrm{NO}_{14}$ requires $\mathrm{M}, 753.2245$].

7-O-(3',4'-Di-O-acetyl-2'-deoxy- β-D-erythro-pentopyrano-syl)-10-O-[6-(methoxycarbonyl)hexanoyl]- β-rhodomycinone 17a.-Under nitrogen, a mixture of compound $10 \mathrm{~b}(42.0 \mathrm{mg}$, 0.0770 mmol), yellow HgO , ($42.0 \mathrm{mg}, 0.194 \mathrm{mmol}$), HgBr_{2} (34.0 $\mathrm{mg}, 0.0940 \mathrm{mmol}$), and MS $4 \AA(500 \mathrm{mg})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 1 h . A solution of the chloride 15 (0.231 mmol) [derived from 1,3,4-tri- O-acetyl-2-de-oxy-D-erythro-pentopyranose ($60.1 \mathrm{mg}, 0.231 \mathrm{mmol}$) according to the reported method] ${ }^{18}$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added, and the mixture was stirred for 24 h in the dark. After filtration with the aid of CHCl_{3}, the organic solution was washed successively with aq. $30 \% \mathrm{KI}$ and saturated aq. NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Purification of the residue by $\mathrm{PLC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}(9: 1)\right]$ gave the title compound 17a ($46.0 \mathrm{mg}, 80 \%$) as red crystals, m.p. $62-65^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $[\alpha]_{\mathrm{D}}^{25}+106$ (c $0.073, \mathrm{CHCl}_{3}$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1740$ and $1605 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.06\left(3 \mathrm{H}, \mathrm{t}, J 7.3,14-\mathrm{H}_{3}\right), 1.25-1.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.46(1 \mathrm{H}$, sextet, $J 7.3,13-\mathrm{H}), 1.50-1.70\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2\right), 1.75(1 \mathrm{H}$, sextet, $J 7.3,13-\mathrm{H}), 1.80-1.90\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 1.90-2.20(2 \mathrm{H}, \mathrm{m}$, 8 - and $\left.2^{\prime}-\mathrm{H}\right), 1.98$ and $2.15(3 \mathrm{H}$ each, $2 \mathrm{~s}, \mathrm{OAc} \times 2), 2.20-2.30$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2\right), 2.45(1 \mathrm{H}, \mathrm{d}, J 15.3,8-\mathrm{H}), 3.62(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{Me}$), 3.89 (1 H , dd, $J 13.0$ and 3.1, $5^{\prime}-\mathrm{H}$), $4.16(1 \mathrm{H}, \mathrm{dd}, J$ 13.0 and $\left.1.8,5^{\prime}-\mathrm{H}\right), 5.05-5.35\left(3 \mathrm{H}, \mathrm{m}, 3^{\prime}-4^{\prime}-\right.$ and $\left.7-\mathrm{H}\right), 5.55$ (1 H , br t, $J 2.5,1^{\prime}-\mathrm{H}$), 6.29 ($1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}$), 7.33 ($1 \mathrm{H}, \mathrm{dd}, J 8.5$ and $1.2,3-\mathrm{H}), 7.72(1 \mathrm{H}, \mathrm{t}, J 8.5,2-\mathrm{H}), 7.90(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and $1.2,1-\mathrm{H}), 12.10(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{OH}), 12.88(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{OH})$ and 13.43 $(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{OH})$ [Found: M^{-}(FAB, negative), 742.2505. $\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{O}_{16}$ requires $\mathrm{M}, 742.2473$].

7-O-(3',4'-Di-O-acetyl-2',6'-dideoxy-2'-fluoro- α-L-talopyran-osyl)-10-O-[6-(methoxycarbonyl)hexanoyl]- β-rhodomycinone 17b.-Under nitrogen, a mixture of compound $10 \mathrm{~b}(28.0 \mathrm{mg}$, $0.0520 \mathrm{mmol})$, yellow $\mathrm{HgO}(45.0 \mathrm{mg}, 0.208 \mathrm{mmol}), \mathrm{HgBr}_{2}(19.0$ $\mathrm{mg}, 0.0520 \mathrm{mmol})$, and MS $3 \AA(260 \mathrm{mg})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 30 min . A solution of the fluoride 16 (0.103 mmol) [derived from 1,3,4-tri- O-acetyl-2,6-dideoxy-2-fluoro- α-L-talopyranose ($30.1 \mathrm{mg}, 0.103 \mathrm{mmol}$) according to the reported method] ${ }^{17}$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ was added, and the mixture was stirred for 48 h in the dark. After filtration with the aid of CHCl_{3}, the organic solution was washed successively with aq. $30 \% \mathrm{KI}$ and saturated aq. NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Purification of the residue by $\mathrm{PLC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}\right.$ $(9: 1)]$ gave the title compound $\mathbf{1 7 b}(30.0 \mathrm{mg}, 75 \%)$ as red crystals, m.p. $109-111^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $[\alpha]_{\mathrm{D}}^{25}+146$ (c 0.24, $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1740$ and $1605 ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.06\left(3 \mathrm{H}, \mathrm{t}, J 7.3,14-\mathrm{H}_{3}\right), 1.29\left(3 \mathrm{H}, \mathrm{d}, J 6.7,6^{\prime}-\mathrm{H}_{3}\right)$, $1.25-1.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.47(1 \mathrm{H}$, sextet, $J 7.3,13-\mathrm{H}), 1.55-1.68$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2\right), 1.77(1 \mathrm{H}$, sextet, J7.3, 13-H), 2.01 and 2.19 (3 H each, $2 \mathrm{~s}, \mathrm{OAc} \times 2$), 2.07 (1 H , dd, $J 15.0$ and $4.3,8-\mathrm{H}$), 2.23-2.30 (4 H, m, CH 2×2), $2.43(1 \mathrm{H}, \mathrm{d}, J 15.0,8-\mathrm{H}), 3.03$ ($1 \mathrm{H}, \mathrm{s}, 9-\mathrm{OH}$), $3.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.38\left(1 \mathrm{H}, \mathrm{q}, J 6.7,5^{\prime}-\mathrm{H}\right)$, $4.60\left(1 \mathrm{H}\right.$, br d, $\left.J 49.4,2^{\prime}-\mathrm{H}\right), 4.97\left(1 \mathrm{H}, \mathrm{dt}, J 32.5\right.$ and $\left.3.2,3^{\prime}-\mathrm{H}\right)$, 5.18-5.28 ($2 \mathrm{H}, \mathrm{m}, 7$-and $4^{\prime}-\mathrm{H}$), 5.61 ($\left.1 \mathrm{H}, \mathrm{d}, J 9.7,1^{\prime}-\mathrm{H}\right), 6.28$
(1 H, d, J1.2, 10-H), 7.34(1 H, d, J8.0, 3-H), 7.73 (1 H, t, $J 8.0,2-$ H), 7.90 ($1 \mathrm{H}, \mathrm{d}, J 8.0,1-\mathrm{H}), 12.08(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{OH}), 12.87(1 \mathrm{H}, \mathrm{s}, 6-$ $\mathrm{OH})$ and $13.41(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{OH})$ [Found: M^{-}(FAB, negative), 774.2507. $\mathrm{C}_{38} \mathrm{H}_{43} \mathrm{FO}_{16}$ requires $\mathrm{M}, 774.2536$].

10-O-[3-(Benzyloxycarbonyl)propionyl)-7-O-($3^{\prime}, 4^{\prime}$-di-O-acetyl-2', 6^{\prime}-dideoxy- 2^{\prime}-fluoro- α - L -talopyranosyl)- β-rhodomycinone 17 c .-Compound $17 \mathrm{c}(20.0 \mathrm{mg}, 57 \%)$ was prepared from compound 10c ($25.0 \mathrm{mg}, 0.0430 \mathrm{mmol}$), yellow $\mathrm{HgO}(38.0 \mathrm{mg}$, $0.176 \mathrm{mmol}), \mathrm{HgBr}_{2}(16.0 \mathrm{mg}, 0.0440 \mathrm{mmol})$, MS $3 \AA(230 \mathrm{mg}$), and the fluoride 16 (0.103 mmol), as red crystals, m.p. 118$121^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $[\alpha]_{\mathrm{D}}^{25}+142\left(c 0.13, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1735$ and $1600 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.04\left(3 \mathrm{H}, \mathrm{t}, J 7.3,14-\mathrm{H}_{3}\right), 1.29\left(3 \mathrm{H}, \mathrm{d}, J 6.5,6^{\prime}-\mathrm{H}_{3}\right)$, 1.52 and 1.76 (1 H each, 2 sextet, $J 7.3,13-\mathrm{H}_{2}$), 2.03 and 2.19 (3 H , each, $2 \mathrm{~s}, \mathrm{OAc} \times 2$), $2.04(1 \mathrm{H}, \mathrm{dd}, J 15.3$ and 4.3, 8-H), $2.40(1 \mathrm{H}, \mathrm{d}, J$ 15.3, 8-H), 2.52-2.78 (4 H, m, CH2CH2 $)$, $3.03(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{OH})$, 4.37 ($1 \mathrm{H}, \mathrm{q}, J 6.5,5^{\prime}-\mathrm{H}$), 4.59 (1 H , br d, $J 49.5,2^{\prime}-\mathrm{H}$), 4.96 ($1 \mathrm{H}, \mathrm{dt}, J 33.0$ and $3.5,3^{\prime}-\mathrm{H}$), 5.09 (2 H , s, benzyl CH2), 5.19 (1 H, d, J 3.1, $\left.4^{\prime}-\mathrm{H}\right), 5.23$ ($\left.1 \mathrm{H}, \mathrm{d}, J 3.7,7-\mathrm{H}\right), 5.60(1 \mathrm{H}, \mathrm{d}, J$ $\left.9.2,1^{\prime}-\mathrm{H}\right), 6.28(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 7.21-7.39(6 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $\mathrm{ArH}), 7.73(1 \mathrm{H}, \mathrm{t}, J 8.0,2-\mathrm{H}), 7.89(1 \mathrm{H}, \mathrm{d}, J 8.0,1-\mathrm{H}), 12.07$ $(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{OH}), 12.85(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{OH})$ and $13.38(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{OH})$ [Found: M^{-}(FAB, negative), 808.2402. $\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{FO}_{16}$ requires $\mathrm{M}, 808.2379$].

7-O-(2'-Deoxy- β-d-erythro-pentopyranosyl)-10-O-[6-(methoxycarbonyl)hexanoyl $]-\beta$-rhodomycinone 18a.-A solution of diacetate $17 \mathrm{a}(56.0 \mathrm{mg}, 0.0750 \mathrm{mmol})$ in $\mathrm{MeOH}\left(4 \mathrm{~cm}^{3}\right)$ was treated with $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}\left(2.25 \mathrm{~cm}^{3}, 0.225 \mathrm{mmol}\right)$ at $10^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 10 min , then three drops of AcOH were added. The resulting mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The separated organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Purification of the residue by $\mathrm{PLC}\left[\mathrm{CHCl}_{3}-\right.$ $\mathrm{MeOH}(9: 1)]$ gave the title compound $\mathbf{1 8 a}(38.0 \mathrm{mg}, 77 \%$) as red crystals, m.p. $196-199{ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$); $[\alpha]_{\mathrm{D}}{ }^{25}+89.9$ (c $\left.0.11, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1735$ and $1605 ; \delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.06\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3,14-\mathrm{H}_{3}\right), 1.25-1.40(2 \mathrm{H}, \mathrm{m}$, CH_{2}), $1.46(1 \mathrm{H}$, sextet, $J 7.3,13-\mathrm{H}), 1.50-1.70(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \times 2$), $1.87(1 \mathrm{H}$, ddd, $J 13.4,5.0$ and $3.0,2-\mathrm{H}), 1.95-2.05$ ($2 \mathrm{H}, \mathrm{m}, 8-\mathrm{and} 2^{\prime}-\mathrm{H}$), 2.20-2.45 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2$), $2.47(1 \mathrm{H}, \mathrm{d}$, $J 15.3,8-\mathrm{H}), 3.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.80-4.00\left(3 \mathrm{H}, \mathrm{m}, 3^{\prime}-, 4^{\prime}-\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 4.07\left(1 \mathrm{H}, \mathrm{d}, J 10.4,5^{\prime}-\mathrm{H}\right), 5.19(1 \mathrm{H}, \mathrm{dd}, J 4.0$ and 1.8 , $7-\mathrm{H}), 5.50\left(1 \mathrm{H}, \mathrm{dd}, J 3.3\right.$ and $\left.3.0,1^{\prime}-\mathrm{H}\right), 6.27(1 \mathrm{H}, \mathrm{d}, J 1.2,10-\mathrm{H}$), $7.32(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.2,3-\mathrm{H}), 7.71(1 \mathrm{H}, \mathrm{t}, J 8.0,2-\mathrm{H}), 7.89$ ($1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.2,1-\mathrm{H}), 12.10(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{OH}), 12.87(1 \mathrm{H}, \mathrm{s}$, 6-OH) and 13.44 ($1 \mathrm{H}, \mathrm{s}, 11-\mathrm{OH}$) [Found: M^{-}(FAB, negative), 658.2286; C, 59.75; H, 5.95. $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{O}_{14}$ requires $\mathrm{M}, 658.2262$; C, 60.17 ; H, 5.82%].

7-O-(2',6'-Dideoxy-2'-fluoro- $\alpha-$-L-talopyranosyl)-10-O-[6-(methoxycarbonyl)hexanoyl]- β-rhodomycinone 18b.-Compound $18 \mathrm{~b}(21.0 \mathrm{mg}, 84 \%$) was prepared from compound 17 b ($28.0 \mathrm{mg}, 0.0360 \mathrm{mmol}$) and $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}\left(1.08 \mathrm{~cm}^{3}\right.$, 0.108 mmol), as red crystals, m.p. $208-210^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}{ }^{-}$ $\left.\mathrm{Et}_{2} \mathrm{O}\right) ;[\alpha]_{\mathrm{D}}^{25}+102\left(c \quad 0.10, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 3550,1730 and $1605 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.06(3 \mathrm{H}, \mathrm{t}, J 7.3$, $\left.14-\mathrm{H}_{3}\right), 1.25-\mathrm{I} .38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.40\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7,6^{\prime}-\mathrm{H}_{3}\right), 1.48$ (1 H , sextet, $J 7.3,13-\mathrm{H}), 1.53-1.68\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2\right), 1.77(1 \mathrm{H}$, sextet, $J 7.3,13-\mathrm{H}$), $1.89\left(1 \mathrm{H}, \mathrm{dd}, J 11.3\right.$ and $\left.8.0,4^{\prime}-\mathrm{OH}\right), 2.06$ ($1 \mathrm{H}, \mathrm{dd}, J 15.3$ and $4.6,8-\mathrm{H}), 2.27\left(4 \mathrm{H}, \mathrm{brt}, J 7.3, \mathrm{CH}_{2} \times 2\right.$), 2.43 (1 H, d, J $15.3,8-\mathrm{H}$), 2.88 ($1 \mathrm{H}, \mathrm{d}, J 11.0,3^{\prime}-\mathrm{OH}$), $3.16(1 \mathrm{H}$, $\mathrm{s}, 9-\mathrm{OH}), 3.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.56-3.70\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}\right.$ - and $\left.4^{\prime}-\mathrm{H}\right)$, 4.22 ($1 \mathrm{H}, \mathrm{q}, J 6.7,5^{\prime}-\mathrm{H}$), 4.62 (1 H, br d, $J 48.8,2^{\prime}-\mathrm{H}$), $5.23(1 \mathrm{H}$, d, $J 2.4,7-\mathrm{H}), 5.57\left(1 \mathrm{H}, \mathrm{d}, J 9.8,1^{\prime}-\mathrm{H}\right), 6.27(1 \mathrm{H}, \mathrm{d}, J 1.2,10-\mathrm{H})$, 7.34 ($1 \mathrm{H}, \mathrm{d}, J 8.0,3-\mathrm{H}), 7.73$ ($1 \mathrm{H}, \mathrm{t}, J 8.0,2-\mathrm{H}$), $7.90(1 \mathrm{H}, \mathrm{d}, J$ $8.0,1-\mathrm{H}), 12.08(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{OH}), 12.89(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{OH})$ and 13.41
($1 \mathrm{H}, \mathrm{s}, 11-\mathrm{OH}$) [Found: M^{-}(FAB, negative), 690.2298 . $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{FO}_{14}$ requires M, 690.2324].

10-O-[3-(Benzyloxycarbonyl)propionyl]-7-O-(2',6'-dideoxy-2^{\prime}-fluoro- α-L-talopyranosyl)- β-rhodomycinone $\quad 18 \mathrm{c}$.-Compound $18 \mathrm{c}(10.0 \mathrm{mg}, 75 \%)$ was prepared from diacetate $17 \mathrm{c}(15.0$ $\mathrm{mg}, 0.019 \mathrm{mmol}$) and $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}\left(0.600 \mathrm{~cm}^{3}, 0.0600\right.$ mmol), as red crystals, m.p. $251-254^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$); $[\alpha]_{\mathrm{D}}^{25}+43.8\left(c \quad 0.089, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3520$, 1730 and $1600 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.03(3 \mathrm{H}, \mathrm{t}, J 7.3$, $\left.14-\mathrm{H}_{3}\right), 1.40\left(3 \mathrm{H}, \mathrm{d}, J 6.7,6^{\prime}-\mathrm{H}_{3}\right), 1.53$ and $1.75(1 \mathrm{H}$ each, 2 sextet, $J 7.3,13-\mathrm{H}_{2}$), 1.88 (1 H , dd, $J 11.6$ and $7.9,4^{\prime}-\mathrm{OH}$), 2.04 ($1 \mathrm{H}, \mathrm{dd}, J 15.3$ and 4.3, $8-\mathrm{H}$), 2.40 ($1 \mathrm{H}, \mathrm{d}, J 15.3,8-\mathrm{H}$), 2.53-2.79 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.87\left(1 \mathrm{H}, \mathrm{d}, J 11.0,3^{\prime}-\mathrm{OH}\right), 3.15(1 \mathrm{H}, \mathrm{s}$, $9-\mathrm{OH}), 3.55-3.70\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{and} 4^{\prime}-\mathrm{H}\right), 4.21(1 \mathrm{H}, \mathrm{q}, J 6.7$, $\left.5^{\prime}-\mathrm{H}\right), 4.61\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 49.4,2^{\prime}-\mathrm{H}\right), 5.09(2 \mathrm{H}, \mathrm{s}$, benzyl CH_{2}), $5.20(1 \mathrm{H}$, br d, $J 3.1,7-\mathrm{H})$, $5.56\left(1 \mathrm{H}, \mathrm{d}, J 8.6,1^{\prime}-\mathrm{H}\right)$, 6.27 ($1 \mathrm{H}, \mathrm{d}, J 1.2,10-\mathrm{H}), 7.24-7.40(6 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and ArH), 7.73 ($1 \mathrm{H}, \mathrm{t}, J 8.0,2-\mathrm{H}), 7.90(1 \mathrm{H}, \mathrm{d}, J 8.0,1-\mathrm{H}), 12.07(1 \mathrm{H}$, $\mathrm{s}, 4-\mathrm{OH}), 12.87(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{OH})$ and $13.39(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{OH})$ [Found: M^{-7} (FAB, negative), 724.2192. $\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{FO}_{14}$ requires $\mathrm{M}, 724.2168$].

10-O-(6-Carboxyhexanoyl)-7-O-(2'-deoxy- β-d-erythro-pentopyranosyl)- β-rhodomycinone 19a.-A solution of ester 18a ($8.0 \mathrm{mg}, 0.012 \mathrm{mmol}$) in $\mathrm{MeOH}\left(2 \mathrm{~cm}^{3}\right)$ was treated with 0.1 mol $\mathrm{dm}^{-3} \mathrm{NaOH}\left(4.80 \mathrm{~cm}^{3}, 0.480 \mathrm{mmol}\right)$ at $10^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 1 h , then four drops of AcOH were added at $0^{\circ} \mathrm{C}$. The resulting mixutre was partitioned between EtOAc and water. The separated organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Purification of the residue by $\mathrm{PLC}\left[\mathrm{CHCl}_{3}-\mathrm{MeOH}(9: 1)\right]$ gave the title compound $19 \mathrm{a}(6.0 \mathrm{mg}, 75 \%$) as red crystals, m.p. $178-$ $181^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$); $[\alpha]_{\mathrm{D}}^{25}+235\left[c 0.021, \mathrm{CHCl}_{3}-\right.$ $\mathrm{MeOH}(9: 1)] ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300$, 1735 and 1600; $\delta_{\mathrm{H}}[500$ MHz ; $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} 0.95\left(3 \mathrm{H}, \mathrm{t}, J 7.3,14-\mathrm{H}_{3}\right), 1.20-1.30(2 \mathrm{H}, \mathrm{m}$, CH_{2}), 1.35-1.60 ($6 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}_{2}$ and $\mathrm{CH}_{2} \times 2$), 1.85-1.95 (2 H , $\mathrm{m}, 8$ - and $\left.2^{\prime}-\mathrm{H}\right), 2.12\left(2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2}\right), 2.15-2.30\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ H and $\left.\mathrm{CH}_{2}\right), 2.30(1 \mathrm{H}, \mathrm{d}, J 15.3,8-\mathrm{H}), 3.55-3.65\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 3.70\left(1 \mathrm{H}\right.$, ddd, $J 8.6,4.0$ and $\left.2.5,3^{\prime}-\mathrm{H}\right), 3.92(1 \mathrm{H}$, dd, $J 13.1$ and $\left.3.4,5^{\prime}-\mathrm{H}\right), 5.00(1 \mathrm{H}$, dd, $J 4.0$ and $1.0,7-\mathrm{H}), 5.29$ (1 H , br t, $\left.J 3.0,1^{\prime}-\mathrm{H}\right), 6.08(1 \mathrm{H}, \mathrm{d}, J 1.0,10-\mathrm{H}), 7.42(1 \mathrm{H}, \mathrm{dd}, J$ 8.0 and $1.2,3-\mathrm{H}), 7.82(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.2,1-\mathrm{H}), 7.86(1 \mathrm{H}, \mathrm{t}$, $J 8.0,2-\mathrm{H}), 11.94(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{OH}), 12.79(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{OH})$ and 13.37 $(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{OH})$ [Found: M^{-}(FAB, negative), 644.2081. $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{O}_{14}$ requires $\mathrm{M}, 644.2105$].

10-O-(6-Carboxyhexanoyl)-7-O-(2',6'-dideoxy-2'-fluoro- α-Ltalopyranosyl) $-\beta$-rhodomycinone 19b.-Compound 19b (6.5 mg , 74%) was prepared from ester $18 \mathrm{~b}(9.0 \mathrm{mg}, 0.013 \mathrm{mmol}$) and 0.1 $\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}\left(5.20 \mathrm{~cm}^{3}, 0.520 \mathrm{mmol}\right)$, as red crystals, m.p. $233-236^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$); $[\alpha]_{\mathrm{D}}^{25}+99.3\left[\begin{array}{cc}c & 0.028 \text {, }\end{array}\right.$ $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}(9: 1)\right] ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3350,1705$ and 1600 ; $\delta_{\mathrm{H}}\left[500 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 0.95\left(3 \mathrm{H}, \mathrm{t}, J 7.3,14-\mathrm{H}_{3}\right), 1.19(3 \mathrm{H}$, d, J6.7, $\left.6^{\prime}-\mathrm{H}_{3}\right), 1.18-1.29\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.35-1.52(5 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}$ and $\left.\mathrm{CH}_{2} \times 2\right)$, $1.57(1 \mathrm{H}$, sextet, $J 7.3,13-\mathrm{H}), 1.90(1 \mathrm{H}, \mathrm{dd}, J$ 15.3 and $4.9,8-\mathrm{H}), 2.12\left(2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2}\right), 2.19-2.32(3 \mathrm{H}, \mathrm{m}$, $8-\mathrm{H}$ and $\left.\mathrm{CH}_{2}\right), 3.45-3.60\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right), 4.21(1 \mathrm{H}, \mathrm{q}, J$ $\left.6.7,5^{\prime}-\mathrm{H}\right), 4.32$ ($\left.1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 49.4,2^{\prime}-\mathrm{H}\right), 4.35(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{OH}), 5.01$ ($1 \mathrm{H}, \mathrm{d}, J 4.9,7-\mathrm{H}), 5.32\left(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{I}^{\prime}-\mathrm{H}\right), 6.10(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H})$, $7.44(1 \mathrm{H}, \mathrm{d}, J 7.9,3-\mathrm{H}), 7.80-7.90(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{and} 2-\mathrm{H}), 11.97$ $(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{OH}), 12.79(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{OH})$ and $13.37(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{OH})$ [Found: M^{-}(FAB, negative), 676.2172. $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{FO}_{14}$ requires M, 676.2167].

10-O-(3-Carboxypropionyl)-7-O-(2',6'-dideoxy-2'-fluoro- α-L-talopyranosyl)- β-rhodomycinone 19c.-Compound $19 \mathrm{c}(6.5 \mathrm{mg}$, 74%) was prepared from ester $18 \mathrm{c}(7.0 \mathrm{mg}, 0.0096 \mathrm{mmol})$ and
$0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}\left(4.0 \mathrm{~cm}^{3}, 0.40 \mathrm{mmol}\right)$, as red crystals, m.p. $264-267^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$); $[\alpha]_{\mathrm{D}}^{25}+90.9$ [cc 0.011 , $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}(9: 1)\right] ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3480,1720$ and 1595; $\delta_{\mathrm{H}}\left[500 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 0.94\left(3 \mathrm{H}, \mathrm{t}, J 7.3,14-\mathrm{H}_{3}\right), 1.19(3 \mathrm{H}$, d, $J 6.7,6^{\prime}-\mathrm{H}_{3}$), 1.48 and 1.58 (1 H each, 2 sextets, $J 7.3,13-\mathrm{H}_{2}$), 1.91 ($1 \mathrm{H}, \mathrm{dd}, J 15.3$ and $4.3,8-\mathrm{H}), 2.23(1 \mathrm{H}, \mathrm{d}, J 15.3,8-\mathrm{H})$, 2.40-2.58 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 3.45-3.60 ($2 \mathrm{H}, \mathrm{m}, 3^{\prime}$-and $4^{\prime}-\mathrm{H}$), $4.22\left(1 \mathrm{H}, \mathrm{q}, J 6.7,5^{\prime}-\mathrm{H}\right), 4.32\left(1 \mathrm{H}, \mathrm{brd}, J 49.4,2^{\prime}-\mathrm{H}\right), 4.33(1 \mathrm{H}$, s, $9-\mathrm{OH}$), $5.02(1 \mathrm{H}, \mathrm{d}, J 4.3,7-\mathrm{H}), 5.32\left(1 \mathrm{H}, \mathrm{d}, J 9.8,1^{\prime}-\mathrm{H}\right), 6.09$ $(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 7.44(1 \mathrm{H}, \mathrm{d}, J 8.0,3-\mathrm{H}), 7.80-7.90(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{and}$ $2-\mathrm{H}), 11.97(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{OH}), 12.80(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{OH})$ and $13.33(1 \mathrm{H}, \mathrm{s}$, $11-\mathrm{OH}$) [Found: M^{-}(FAB, negative), 634.1678. $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{FO}_{14}$ requires $\mathrm{M}, 634.1698$].

References

1 R. Yamamoto, S. Fujisawa and M. Kawamura, Yakugaku Zasshi, 1971, 91, 855; H. Minlon, U.S. Pat. 2656 366, 1953 (Chem. Abstr., 1954, 48, 10794b).
2 J. G. Baxter, C. D. Robeson, J. D. Taylor and R. W. Lehman, J. Am. Chem. Soc., 1943, 65, 918.
3 M. Israel, P. G. Potti and R. Seshadri, J. Med. Chem., 1985, 28, 1223; T. Tsuchiya, Y. Takagi, S. Umezawa, T. Takeuchi, K. Komuro, C. Nosaka, H. Umezawa, S. Fukatsu and T. Yoneta, J. Antibiot., 1988, 41, 988.
4 N. F. Magri and D. G. I. Kingston, J. Nat. Prod., 1988, 51, 298; H. M. Deutsch, J. A. Glinski, M. Hernandez, R. D. Haugwitz, V. L. Narayanan, M. Suffness and L. H. Zalkow, J. Med. Chem., 1989, 32, 788.
5 J. W. Hill and W. H. Carothers, J. Am. Chem. Soc., 1933, 55, 5023. 6 Y. Kita, H. Maeda, F. Takahashi and S. Fukui, J. Chem. Soc., Chem. Commun., 1993, 410.

7 For similar acylating reagents, see: Y. Tamura, J. Haruta, S. Okuyama and Y. Kita, Tetrahedron Lett., 1978, 3737; Y. Kita, J. Haruta, H. Tagawa and Y. Tamura, J. Org. Chem., 1980, 45, 4519; Y. Kita, J. Haruta, H. Yasuda, K. Fukunaga, Y. Shirouchi and Y. Tamura, J. Org. Chem., 1982, 47, 2697; Y. Kita, S. Akai, N. Ajimura, M. Yoshigi, T. Tsugoshi, H. Yasuda and Y. Tamura, J. Org. Chem., 1986, 51, 4150; Y. Kita, S. Akai, M. Yamamoto, M. Taniguchi and Y. Tamura, Synthesis, 1989, 334.

8 R. P. Linstead, B. C. L. Weedon and B. Wlandislaw, J. Chem. Soc., 1955, 1097.
9 J. Cason, Org. Synth., 1955, Coll. Vol. 3, p. 169.
10 J. H. Short and U. Biermacher, Chim. Ther., 1966, 456.
11 G. T. Morgan and E. Walton, J. Chem. Soc., 1935, 290.
12 E. S. Rothman, S. Serota and D. Swern, J. Org. Chem., 1966, 31, 629.
13 P. Sieber, Helv. Chim. Acta, 1977, 60, 2711; H. Gerlach, Helv. Chim. Acta, 1977, 60, 3039.
14 Y. Kita, H. Maeda, M. Kirihara, Y. Fujii, T. Nakajima, H. Yamamoto and H. Fujioka, Tetrahedron Lett., 1990, 31, 7173; Y. Kita, H. Maeda, M. Kirihara, Y. Fujii, T. Nakajima, H. Yamamoto, Y. Tamura and H. Fujioka, Chem. Pharm. Bull., 1992, 40, 61.
15 A. Yoshimoto, S. Fujii, O. Johdo, K. Kubo, T. Ishikura, H. Naganawa, T. Sawa, T. Takeuchi and H. Umezawa, J. Antibiot., 1986, 39, 902.
16 Y. Kimura, M. Suzuki, T. Matsumoto, R. Abe and S. Terashima, Bull. Chem. Soc. Jpn., 1986, 59, 423.
17 K.-D. Ok, T. Takagi, T. Tsuchiya, S. Umezawa and H. Umezawa, Carbohydr. Res., 1987, 169, 69
18 J. Davoll and B. Lythgoe, J. Chem. Soc., 1949, 2526.
19 F. G. Baddar and L. S. El-Assal, J. Chem. Soc., 1950, 3606.
Paper 3/02470I
Received 29th April 1993 Accepted 30th June 1993

[^0]: \dagger Although the acid chloride could not be obtained from compound 1a under reflux in CHCl_{3} in the presence of thionyl dichloride according to ref. 10 because of thermal instability, it was obtained at below room temperature in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of oxalyl dichloride.

[^1]: \ddagger These acid chlorides were prepared according to the preceding footnote. \dagger The acid chloride derived from compound 1b was unstable

[^2]: ${ }^{a}$ Bath temperature. ${ }^{b}$ Oil. Partial decomposition occurred on distillation. ${ }^{c}$ High-resolution (EI) data. ${ }^{d}$ High-resolution (FAB, positive) data (Found: $\mathrm{M}^{+}+\mathrm{H}, 347.2249 . \mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{4}$ requires $\mathrm{M}+\mathrm{H}, 347.2222$). ${ }^{e}$ (Found: $\mathrm{N}, 4.85$. Requires $\mathrm{N}, 4.91 \%$). ${ }^{f}$ High-resolution (EI) data (Found: M^{+}, 330.1524. $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Si}$ requires $\mathrm{M}, 330.1499$). ${ }^{9}$ M.p. $47-48{ }^{\circ} \mathrm{C}$.

